@article{DresenPimientoPateletal.2023, author = {Dresen, Ellen and Pimiento, Jose M. and Patel, Jayshil J. and Heyland, Daren K. and Rice, Todd W. and Stoppe, Christian}, title = {Overview of oxidative stress and the role of micronutrients in critical illness}, series = {Journal of Parenteral and Enteral Nutrition}, volume = {47}, journal = {Journal of Parenteral and Enteral Nutrition}, doi = {10.1002/jpen.2421}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318186}, pages = {S38 -- S49}, year = {2023}, abstract = {Inflammation and oxidative stress represent physiological response mechanisms to different types of stimuli and injury during critical illness. Its proper regulation is fundamental to cellular and organismal survival and are paramount to outcomes and recovery from critical illness. A proper maintenance of the delicate balance between inflammation, oxidative stress, and immune response is crucial for resolution from critical illness with important implications for patient outcome. The extent of inflammation and oxidative stress under normal conditions is limited by the antioxidant defense system of the human body, whereas the antioxidant capacity is commonly significantly compromised, and serum levels of micronutrients and vitamins significantly depleted in patients who are critically ill. Hence, the provision of antioxidants and anti-inflammatory nutrients may help to reduce the extent of oxidative stress and therefore improve clinical outcomes in patients who are critically ill. As existing evidence of the beneficial effects of antioxidant supplementation in patients who are critically ill is still unclear, actual findings about the most promising anti-inflammatory and antioxidative candidates selenium, vitamin C, zinc, and vitamin D will be discussed in this narrative review. The existing evidence provided so far demonstrates that several factors need to be considered to determine the efficacy of an antioxidant supplementation strategy in patients who are critically ill and indicates the need for adequately designed multicenter prospective randomized control trials to evaluate the clinical significance of different types and doses of micronutrients and vitamins in selected groups of patients with different types of critical illness.}, language = {en} } @article{HillDossowHeylandetal.2022, author = {Hill, Aileen and Dossow, Vera von and Heyland, Daren K. and Rossaint, Rolf and Meybohm, Patrick and Fox, Henrik and Morshuis, Michiel and Elke, Gunnar and Panholzer, Bernd and Haneya, Assad and B{\"o}ning, Andreas and Niemann, Bernd and Zayat, Rashad and Moza, Ajay and Stoppe, Christian}, title = {Preoperative nutritional optimization and physical exercise for patients scheduled for elective implantation for a left-ventricular assist device — The PROPER-LVAD study}, series = {Surgeries}, volume = {3}, journal = {Surgeries}, number = {4}, issn = {2673-4095}, doi = {10.3390/surgeries3040031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288317}, pages = {284 -- 296}, year = {2022}, abstract = {Background: Prehabilitation is gaining increasing interest and shows promising effects on short- and long-term outcomes among patients undergoing major surgery. The effect of multimodal, interdisciplinary prehabilitation has not yet been studied in patients with severe heart failure scheduled for the implantation of a left-ventricular assist device (LVAD). Methods: This randomized controlled multi-center study evaluates the effect of preoperative combined optimization of nutritional and functional status. Patients in the intervention group are prescribed daily in-bed cycling and oral nutrition supplements (ONS) from study inclusion until the day before LVAD-implantation. Patients in the control group receive standard of care treatment. The primary outcomes for the pilot study that involves 48 patients are safety (occurrence of adverse events), efficacy (group separation regarding the intake of macronutrients), feasibility of the trial protocol (compliance (percentage of received interventions) and confirmation of recruitment rates. Secondary outcomes include longitudinal measurements of muscle mass, muscle strength, physical function and quality of life, next to traditional clinical outcomes (30-day mortality, hospital and ICU length of stay, duration of mechanical ventilation and number of complications and infections). If the pilot study is successful, a larger confirmatory, international multicenter study is warranted.}, language = {en} }