@article{CosarinskyRoemerRoces2020, author = {Cosarinsky, Marcela I. and R{\"o}mer, Daniela and Roces, Flavio}, title = {Nest Turrets of Acromyrmex Grass-Cutting Ants: Micromorphology Reveals Building Techniques and Construction Dynamics}, series = {Insects}, volume = {11}, journal = {Insects}, number = {2}, issn = {2075-4450}, doi = {10.3390/insects11020140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200680}, year = {2020}, abstract = {Acromyrmex fracticornis grass-cutting ants construct conspicuous chimney-shaped nest turrets made of intermeshed grass fragments. We asked whether turrets are constructed by merely piling up nearby materials around the entrance, or whether ants incorporate different materials as the turret develops. By removing the original nest turrets and following their rebuilding process over three consecutive days, age-dependent changes in wall morphology and inner lining fabrics were characterized. Micromorphological descriptions based on thin sections of turret walls revealed the building behaviors involved. Ants started by collecting nearby twigs and dry grass fragments that are piled up around the nest entrance. Several large fragments held the structure like beams. As a net-like structure grew, soil pellets were placed in between the intermeshed plant fragments from the turret base to the top, reinforcing the structure. Concomitantly, the turret inner wall was lined with soil pellets, starting from the base. Therefore, the consolidation of the turret occurred both over time and from its base upwards. It is argued that nest turrets do not simply arise by the arbitrary deposition of nearby materials, and that workers selectively incorporate large materials at the beginning, and respond to the developing structure by reinforcing the intermeshed plant fragments over time.}, language = {en} } @phdthesis{Iuga2007, author = {Iuga, Maria}, title = {Ab Initio and Finite Element Simulations of Material Properties in Multiphase Ceramics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26246}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {In the present study numerical methods are employed within the framework of multiscale modeling. Quantum mechanics and finite element method simulations have been used in order to calculate thermoelastic properties of ceramics. At the atomic scale, elastic constants of ten different ceramics (Al2O3, alpha- and beta-SiC, TiO2-rutile and anatase, AlN, BN, CaF2, TiB2, ZrO2) were calculated from the first principles (ab-initio) using the density functional theory with the general gradient approximation. The simulated elastic moduli were compared with measured values. These results have shown that the ab-initio computations can be used independently from experiment to predict elastic behavior and can provide a basis for the modeling of structural and elastic properties of more complex composite ceramics. In order to simulate macroscopic material properties of composite ceramics from the material properties of the constituting phases, 3D finite element models were used. The influence of microstructural features such as pores and grain boundaries on the effective thermoelastic properties is studied through a diversity of geometries like truncated spheres in cubic and random arrangement, modified Voronoi polyhedra, etc. A 3D model is used for modeling the microstructure of the ceramic samples. The measured parameters, like volume fractions of the two phases, grain size ratios and grain boundary areas are calculated for each structure. The theoretical model is then varied to fit the geometrical data derived from experimental samples. The model considerations are illustrated on two types of bi-continuous materials, a porous ceramic, alumina (Al2O3) and a dense ceramic, zirconia-alumina composite (ZA). For the present study, alumina samples partially sintered at temperatures between 800 and 1320 C, with fractional densities between 58.4\% and 97\% have been used. For ZA ceramic the zirconia powder was partially stabilized and the ratio between alumina and zirconia was varied. For these two examples of ceramics, Young's modulus and thermal conductivity were calculated and compared to experimental data of samples of the respective microstructure. Comparing the experimental and simulated values of Young's modulus for Al2O3 ceramic a good agreement was obtained. For the thermal conductivity the consideration of thermal boundary resistance (TBR) was necessary. It was shown that for different values of TBR the experimental data lie within the simulated thermal conductivities. In the case of ZA ceramic also a good agreement between simulated and experimental values was observed. For smaller ZrO2 fractions, a larger Young's modulus and thermal conductivity was observed in the experimental samples. The discrepancies have been discussed by taking into account the effect of pressure. Considering the dependence of the thermoelastic properties on the pressure, it has been shown that the thermal stresses resulting from the cooling process were insufficient to explain the discrepancies between experimental and simulated thermoelastic properties.}, subject = {Finite-Elemente-Methode}, language = {en} }