@phdthesis{Genheimer2023, author = {Genheimer, Ulrich}, title = {The Photophysics of Small Organic Molecules for Novel Light Emitting Devices}, doi = {10.25972/OPUS-32031}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320313}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This PhD thesis addresses the photophysics of selected small organic molecules with the purpose of using them for efficient and even novel light sources. In particular, the studies presented focused on revealing the underlying exciton dynamics and determining the transition rates between different molecular states. It was shown how the specific properties and mechanisms of light emission in fluorescent molecules, molecules with phosphorescence or thermally activated delayed fluorescence (TADF), biradicals, and multichromophores can be utilized to build novel light-emitting devices. The main tool employed here was the analysis of the emitters' photon statistics, i.e. the analysis of the temporal distribution of emitted photons, during electrical or optical excitation. In the introduction of this work, the working principle of an organic light-emitting diode (OLED) was introduced, while Chapter 2 provided the physical background of the relevant properties of organic molecules and their interaction with light. In particular, the occurrence of discrete energy levels in organic semiconductors and the process of spontaneous light emission were discussed. Furthermore, in this chapter a mathematical formalism was elaborated with the goal to find out what kind of information about the studied molecule can be obtained by analyzing its photon statistics. It was deduced that the intensity correlation function g (2)(t) contains information about the first two factorial moments of the photon statistics and that higher order factorial moments do not contain any additional information about the system under study if the system is always in the same state after the emission of a photon. To conclude the introductory part, Chapter 3 introduced the utilized characterization methods including confocal microscopy of single molecules, time correlated single photon counting and temperature dependent photoluminescence measurements. To provide the background necessary for an understanding of for the following result chapters, in Section 4.1 a closer look was taken at the phenomenon of blinking and photobleaching of individual molecules. For a squaraine-based fluorescent emitter rapid switching between a bright and dark state was observed during photoexcitation. Using literature transition rates between the molecular states, a consistent model was developed that is able to explain the distribution of the residence times of the molecule in the bright and dark states. In particular, an exponential and a power-law probability distribution was measured for the time the molecule resides in tis bright and dark state, respectively. This behavior as well as the change in photoluminescence intensity between the two states was conclusively explained by diffusion of residual oxygen within the sample, which had been prepared in a nitrogen-filled glovebox. For subsequent samples of this work, thin strips of atomic aluminum were deposited on the matrices to serve as oxygen getter material. This not only suppressed the efficiency of photobleaching, but also noticeably prolonged the time prior to photobleaching, which made many of the following investigations possible in the first place. For emitters used in displays, emission properties such as narrow-band luminescence and short fluorescence lifetimes are desired. These properties can be influenced not only by the emitter molecule itself, but also by the interaction with the chosen environment. Therefore, before focusing on the photophysics of individual small organic molecules, Section 4.2 highlighted the interaction of a perylene bisimide-based molecular species with its local environment in a disordered polymethyl methacrylate matrix. In a statistical approach, individual photophysical properties were measured for 32 single molecules and correlations in the variation of the properties were analyzed. This revealed how the local polarity of the molecules' environment influences their photophysics. In particular, it was shown how an increase in local polarity leads to a red-shifted emission, narrower emission lines, broader vibronic splitting between different emission lines in combination with a smaller Huang-Rhys parameter, and a longer fluorescence lifetime. In the future, these results may help to embed individual chromophores into larger macromolecules to provide the chromophore with the optimal local environment to exhibit the desired emission properties. The next two sections focused on a novel and promising class of chromophores, namely linear coordinated copper complexes, synthesized in the group of Dr. Andreas Steffen at the Institute of Inorganic Chemistry at the University of W{\"u}rzburg. In copper atoms, the d-orbitals are fully occupied, which prevents undesirable metal-centered d-d⋆ states, which tend to lie low in energy and recombine non-radiatively. Simultaneously, the copper atom provides a flexible coordination geometry, while complexes in their linear form are expected to exhibit the least amount of excited state distortions. Depending on the chosen ligands, these copper complexes can exhibit phosphorescence as well as temperature activated delayed fluorescence. In Section 4.3, a phosphorescent copper complex with a chlorine atom and a 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-2-pyrrolidine-ylidene- ligand was tested for its suitability as an optically active material in an OLED. For this purpose, an OLED with a polyspirobifluorene-based copolymer matrix and the dopant at a concentration of 20 wt\% was electrically excited. Deconvolution of the emission spectrum in contributions from the matrix and the dopant revealed that 60 \% of the OLEDs emission was due to the copper complex. It was also shown that the shape of the emission spectrum of the copper complex remains unchanged upon incorporation into the OLED, but is red-shifted by about 233 meV. In Section 4.4, a second copper complex exhibiting thermally activated delayed fluorescence was analyzed. This complex comprised a carbazolate as well as a 2-(2,6- diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-ide ligand and was examined in the solid state and at the single-molecule level, where single photon emission was recorded up to an intensity of 78'000 counts per second. The evaluation of the second-order autocorrelation function of the emitted light proved an efficient transition between singlet and triplet excited states on the picosecond time scale. In the solid state, the temperature- dependent fluorescence decay of the complex was analyzed after pulsed photoexcitation in the temperature range between 300 K and 5 K. From these measurements, a small singlet-triplet energy gap of only 65 meV and a triplet sublevel splitting of 3.0 meV were derived. The transition rates between molecular states could also be determined. Here, the fast singlet decay time of τS1 = 9.8ns proved the efficient thermally activated delayed fluorescence process, which was demonstrated for the first time for this new class of copper(I) complexes thus. While the use of thermally activated delayed fluorescence is a potential way to harness otherwise long-living dark triplet states, radicals completely avoid dark triplet states. However, this usually comes with the huge drawback of the molecules being chemically unstable. Therefore, two chemically stable biradical species were synthesized in the framework of the DFG research training school GRK 2112 on Molecular biradicals: structure, properties and reactivity, by Yohei Hattori in the group of Prof. Dr. Christoph Lambert and Rodger Rausch in the group of Prof. Dr. Frank W{\"u}rthner at the Institute of Organic Chemistry at the University of W{\"u}rzburg, respectively. In Section 4.5, it was investigated how these molecules can be used in OLEDs. In the first isoindigo based biradical (6,6'-bis(3,5-di-tert-butyl-4-phenoxyl)-1,1'-bis(2- ethylhexyl)-[3,3'-biindolinyl-idene]-2,2'-dione) two tert-butyl moieties kinetically block chemical reactions at the place of the lone electrons and an electron-withdrawing core shifts the electron density into the center of the chromophore. With these properties, it was possible to realize a poly(p-phenylene vinylene) copolymer based OLED doped with the biradical and to observe luminescence during optical as well as electrical excitation. Analyzing shapes of the photo- and electroluminescence spectra at different doping concentrations, F{\"o}rster resonance energy transfer was determined to be the dominant transition mechanism for excitons from the matrix to the biradical dopants. Likewise, OLEDs could be realized with the second diphenylmethylpyridine based birad- ical (4-(5-(bis(2,4,6-trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)-N-(4-(5-(bis(2,4,6- -trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)phenyl)-N-(4-methoxyphenyl)aniline) as dopant. In this biradical, chlorinated diphenylmethyl groups protect the two unpaired electrons. Photo- and electroluminescence spectra showed an emission in the near in- frared spectral range between 750 nm and 1000 nm. Also, F{\"o}rster resonance energy trans- fer was the dominant energy transfer mechanism with an transfer efficiency close to 100 \% even at doping concentrations of only 5 wt\%. In addition to demonstrating the working OLEDs based in biradicals, the detection of luminescence of the two biradical species in devices also constitutes an important step toward making use of experimental techniques such as optically detected electron spin resonance, which could provide information about the electronic states of the emitter and their spin manifold during OLED operation. Another class of emitters studied are molecules in which several chromophores are co- valently linked to form a macrocyclic system. The properties of these multichromophores were highlighted in Section 4.6. Here, it was analyzed how the photophysical behavior of the molecules is affected by the covalent linking, which determines the interaction be- tween the chromophores. The first multichromophore, 2,2'-ditetracene, was synthesized by Lena Ross in the group of Prof. Dr. Anke Kr{\"u}ger at the Institute of Organic Chemistry at the University of W{\"u}rzburg and was analyzed in this work both at the single-molecule level and in its aggregated crystalline form. While the single crystals were purified and grown in a vertical sublimation oven, the samples for the single molecule studies were prepared in matrices of amorphous polymethyl methacrylate and crystalline anthracene. Tetracene was analyzed concurrently to evaluate the effects of covalent linking. In samples where the distance between two molecules is sufficiently large, tetracene and 2,2'-ditracene show matching emission profiles with the only difference in the Franck-Condon factors and a de- creased photoluminescence decay time constant from 14 ns for tetracene to 5 ns for 2,2'- ditracene, which can be attributed to the increased density of the vibrational modes in 2,2'-ditracene. Evaluation of the photon statistics of individual 2,2'-ditracene molecules however showed that the system does not behave as two individual chromophores but as a collective state, preserving the spectral properties of the two tetracene chromophores. Complementary calculations performed by Marian Deutsch in the group of Prof. Dr. Bernd Engels at the Institute of Physical and Theoretical Chemistry at the University of W{\"u}rzburg helped to understand the processes in the materials and could show that the electronic and vibronic modes of 2,2'-ditracene are superpositions of the modes occurring in tetracene. In contrast, single-crystalline 2,2'-ditetracene behaves significantly different than tetracene, namely exhibiting a red shift in photoluminescence of 150 meV, caused by an altered crys- talline packing that lowers the S1-state energy level. Temperature-dependent photolu- minescence measurements revealed a rich emission pattern from 2,2'-ditetracene single crystals. The mechanisms behind this were unraveled using photoluminescence lifetime density analysis in different spectral regions of the emission spectrum and at different tem- peratures. An excimer state was identified that is located about 5 meV below the S1-state, separated by a 1 meV barrier, and which can decay to the ground state with a time constant of 9 ns. Also, as the S1-state energy level is lowered below the E(S1) ≥ 2 ×E(T1) threshold, singlet fission is suppressed in 2,2'-ditetracene in contrast to tetracene. Therefore, at low temperatures, photoluminescence is enhanced by a factor of 46, which could make 2,2'- ditetracene a useful material for future applications in devices such as OLEDs or lasers. The second multichromophore species, para-xylylene bridged perylene bisimide macrocycles, were synthesized by Peter Spenst in the group of Prof. Dr. Frank W{\"u}rthner at the Institute of Organic Chemistry at the University of W{\"u}rzburg, by linking three and four perylene bisimides, respectively. To reveal the exciton dynamics in these macrocycles, highly diluted monomers as well as trimers and tetramers were doped into matrices of polymethyl methacrylate to create thin films in which individual macrocycles could be analyzed. The emission spectra of the macrocycles remained identical to those of the monomers, indicating weak coupling between the chromophores. Single photon emission could be verified for monomers as well as macrocycles, as exciton-exciton annihilation processes suppress the simultaneous emission of two photons from one macrocycle. Nevertheless, the proof of the occurrence of a doubly excited state was obtained by excitation power dependent photon statistics measurements. The formalism developed in the theory part of this thesis for calculating the photon statistics of multichromophore systems was used here to find a theoretical model that matches the experimental results. The main features of this model are a doubly excited state, fast singlet-singlet annihilation, and an efficient transition from the doubly excited state to a dark triplet state. The occurrence of triplet-triplet annihilation was demonstrated in a subsequent experiment in which the macrocycles were excited at a laser intensity well above the saturation intensity of the monomer species. In contrast to the monomers, the trimers and tetramers exhibited neither a complete dark state nor saturation of photoluminescence. Both processes, efficient singlet-singlet and triplet-triplet annihilation make perylene bisimide macrocycles exceptionally bright single photon emitters. These advantages were utilized to realize a room temperature electrically driven fluorescent single photon source. For this purpose, OLEDs were fabricated using polyvinylcarbazole and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol blends as a host material for perylene bisimide trimers. Photon antibunching could be observed in both optically and electrically driven devices, representing the first demonstration of electrically driven single photon sources using fluorescent emitters at room temperature. As expected from the previous optical experiments, the electroluminescence of the molecules was exceptionally bright, emitting about 105 photons per second, which could be seen even by eye under the microscope. Finally, in the last section 4.7 of this thesis, two additional measurement schemes were proposed as an alternative to the measurement of the second-order correlation function g (2)(t) of single molecules, which only provides information about the first two factorial moments of the molecules' photon statistics. In the first scheme, the g (3)(t) function was measured with three photodiodes, which is a consequential extension of the Hanbury Brown and Twiss measurement with two photodiodes. It was demonstrated how measuring the g (3)(t) function is able to identify interfering emitters with non-Poisson statistics in the experiment. The second setup was designed with an electro-optic modulator that repeatedly gen- erates photoexcitation in the form of a step function. The recording of luminescence transients for different excitation intensities yields the same results as the correspond- ing g (2)-functions measured on single emitters, both in their shape and in their depen- dence on excitation power. To demonstrate this concept, the TADF emitter TXO-TPA (2- [4-(diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) was doped at a concen- tration of 10-4 wt\% in a mCP (1,3-Bis(N-carbazolyl)benzene) matrix. This concentration was low enough that TXO-TPA molecules did not interact with each other, but an ensem- ble of molecules was still present in the detection volume. The intramolecular transition rates between singlet and triplet states of TXO-TPA could be derived with an error of at most 5 \%. Other experimental techniques designed to obtain this information require ei- ther lengthy measurements on single molecules, where sample preparation is also often a challenge, or temperature-dependent fluorescence lifetime measurements, which require a cryostat, which in turn places constraints on the sample design used. In future, this ap- proach could establish a powerful method to study external factors influencing molecular transition rates. Overall, this thesis has introduced new molecular materials, revealed their photophys- ical properties, and demonstrated how they can be used to fabricate efficient and even novel light sources.}, subject = {Fotophysik}, language = {en} } @article{JoensuuAltimirHakolaetal.2016, author = {Joensuu, Johanna and Altimir, Nuria and Hakola, Hannele and Rost{\´a}s, Michael and Raivonen, Maarit and Vestenius, Mika and Aaltonen, Hermanni and Riederer, Markus and B{\"a}ck, Jaana}, title = {Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes}, series = {Atmospheric Chemistry and Physics}, volume = {16}, journal = {Atmospheric Chemistry and Physics}, doi = {10.5194/acp-16-7813-2016}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198547}, pages = {7813-7823}, year = {2016}, abstract = {Biogenic volatile organic compounds (BVOCs) produced by plants have a major role in atmospheric chemistry. The different physicochemical properties of BVOCs affect their transport within and out of the plant as well as their reactions along the way. Some of these compounds may accumulate in or on the waxy surface layer of conifer needles and participate in chemical reactions on or near the foliage surface. The aim of this work was to determine whether terpenes, a key category of BVOCs produced by trees, can be found on the epicuticles of Scots pine (Pinus sylvestris L.) and, if so, how they compare with the terpenes found in shoot emissions of the same tree. We measured shoot-level emissions of pine seedlings at a remote outdoor location in central Finland and subsequently analysed the needle surface waxes for the same compounds. Both emissions and wax extracts were clearly dominated by monoterpenes, but the proportion of sesquiterpenes was higher in the wax extracts. There were also differences in the terpene spectra of the emissions and the wax extracts. The results, therefore, support the existence of BVOC associated to the epicuticular waxes. We briefly discuss the different pathways for terpenes to reach the needle surfaces and the implications for air chemistry.}, language = {en} } @phdthesis{Maier2010, author = {Maier, Florian C.}, title = {Spectromicroscopic characterisation of the formation of complex interfaces}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65062}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Within the framework of this thesis the mechanisms of growth and reorganisation of surfaces within the first few layers were investigated that are the basis for the fabrication of high quality thin films and interfaces. Two model systems, PTCDA/Ag(111) and CdSe/ZnSe quantum dots (QD), were chosen to study such processes in detail and to demonstrate the power and improvements of the aberration corrected spectromicroscope SMART [1] simultaneously. The measurements benefit especially from the enhanced transmission of the microscope and also from its improved resolution. SMART, the first double-aberration corrected instrument of its kind [2], provided comprehensive methods (LEEM/PEEM, μ-LEED, μ-XPS) to study in-situ and in real time the surface reorganisation and to determine morphology, local structure and local chemical composition of the resulting thin film. Complementarily, a commercial AFM [3] was used ex-situ. XPEEM and μ-XPS measurements were made possible by attaching SMART to the high flux density beamline of the soft-X-ray source BESSY-II [4]. PTCDA/Ag(111) - Growth and structure of the first two layers Although PTCDA/Ag(111) is one of the most intensely studied model systems for the growth of organic semiconductor thin films, it still offers new insights into a complex growth behaviour. This study enlightens the temperature dependant influence of morphological features as small as monatomic Ag steps on the growth process of the first two layers. At low temperatures, single Ag steps act as diffusion barriers. But interdiffusion was observed already for the 2nd layer whereas domain boundaries in the 1st PTCDA-layer persist for crystallite growth in the 2nd layer. 1st layer islands are more compact and the more dendritic development of the 2nd layer indicates reduced interaction strength between 2nd and 1st layer. These findings were explained by a model consisting of structural and potential barriers. The second part of the PTCDA study reveals a variety of phases that appears only if at least two layers are deposited. Besides the six known rotational domains of the interface system PTCDA/Ag(111) [5], a further manifold of structures was discovered. It does not only show a surprising striped image contrast, but the 2nd layer also grows in an elongated way along these so-called 'ripples'. The latter show a rather large period and were found in a wide temperature range. Additionally the μ-LEED pattern of such a domain shows a new super-superstructure as well. This phase is explained by a structural model that introduces a rotated, more relaxed domain in the 2nd layer that does not exist in the first layer. Its structural parameters are similar to those of the bulk unitcells of PTCDA. The model is confirmed by the observation of two different rotational domains that grow on top of one single 'substrate' domain in the 1st layer. The orientations of the ripple phases fit as well to the predictions of the model. The growth direction along the ripples corresponds to the short diagonal of the super-superstructure unitcell with diamond-like shape. CdSe/ZnSe - Inverse structuring by sublimation of an α-Te cap With the second model system the formation of CdSe quantum dots (QD) from strained epi-layers was investigated. In this case the structures do not form during deposition, but rather during sublimation of the so-called 'ignition cap'. For these pilot experiments not only the process of QD formation itself was of interest, but also the portability of the preparation and the prevention of contaminations. It was found that the α-Se is well suited for capping and the last step of the QD preparation, the sublimation of the α-Te cap, needs a sufficiently high rate in rise of temperature. Subsequently the cap, the process of desorption and the final surface with the quantum structures were investigated in detail. The cap was deposited by the MBE-group in W{\"u}rzburg as an amorphous Te layer but was found to contain a variety of structures. Holes, cracks, and micro-crystallites within an α-Te matrix were identified. Sublimation of the "ignition cap" was observed in real-time. Thus the discovered cap-structures could be correlated with the newly formed features as, e.g., QDs on the bare CdSe surface. Since CdSe/ZnSe QDs prefer to form in the neighbourhood of the Te μ-crystallites, Te was found to play a major role in their formation process. Different explanations as the impact of Te as a surfactant, an enhanced mobility of adatoms or as stressor nuclei are discussed. The spectromicroscopic characterisation of the CdSe surface with QDs revealed the crystallographic directions. An increased Cd signal of the film was found at positions of former holes. Several possibilities as segregation or surface termination are reviewed, that might explain this slight Cd variation. Therewith, an important step to a detailed understanding of the complex reorganisation process in coating systems could be achieved.}, subject = {Halbleiterschicht}, language = {en} }