@phdthesis{Fei2023, author = {Fei, Lin}, title = {Optogenetic regulation of osmolarity and water flux}, doi = {10.25972/OPUS-32309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323092}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Optogenetics is a powerful technique that utilizes light to precisely regulate physiological activities of neurons and other cell types. Specifically, light-sensitive ion channels, pumps or enzymes are expressed in cells to enable their regulation by illumination, thus allowing for precise control of biochemical signaling pathways. The first part of my study involved the construction, optimization, and characterization of two optogenetic tools, KCR1 and NCR1. Elena Govorunova et al. discovered a lightgated potassium channel, KCR1, in the protozoan Hyphochytrium catenoides. Traditional potassium ion channels are classified as either ligand-gated or voltage-gated and possess conserved pore-forming domains and K+ -selective filters. However, KCR1 is unique in that it does not contain the signature sequence of previously known K+ channels and is a channelrhodopsin. We synthesized the KCR1 plasmid according to the published sequence and expressed it in Xenopus oocytes. Due to the original KCR1 current being too small, I optimized it into KCR1 2.0 to improve its performance by fusing LR (signal peptide LucyRho, enhances expression) at the N-terminal and T (trafficking signal peptide) and E (ER export signal peptide) at the C-terminal. Additionally, I investigated the light sensitivity, action spectrum, and kinetics of KCR1 2.0 in Xenopus oocytes. The potassium permeability of KCR1 2.0, PK/Pna  24, makes KCR1 2.0 a powerful hyperpolarizing tool that can be used to inhibit neuronal firing in animals. Inspired by KCR1, we used the KCR1 sequence as a template for gene sequence alignment with the sequences in H. catenoides. We found that NCR1 and KCR1 have similar gene sequences. NCR1 was characterized by us as a light-gated sodium channel. This NCR1 was also characterized and published by Govorunova et al. very recently, with the name HcCCR. Due to the original NCR1 current being too small, I optimized it into NCR1 2.0 to improve its performance by fusing LR at the N-terminal and T and E at the C-terminal, which significantly improved the expression level and greatly increased the current amplitude of NCR1. Full-length NCR1 2.0 contains 432 amino acids. To test whether the number of amino acids changes the characteristics of NCR1 2.0, we designed NCR1 2.0 (330), NCR1 2.0 (283), and NCR1 2.0 (273) by retaining the number of amino acids at 330, 280, and 273 in NCR1 2.0, respectively. As the number of amino acids decreased, the current in NCR1 2.0 increased. I also investigated the light sensitivity, action spectrum, and kinetics of NCR1 2.0 (273) in the Xenopus Abstract 2 oocytes. We performed four point mutations at amino acid positions 133 and 116 of NCR1 2.0 and analyzed the reversal potentials of the mutants. The mutations were as follows: NCR1 2.0 (273 D116H), NCR1 2.0 (273 D116E), NCR1 2.0 (283 V133H), and NCR1 2.0 (283 D116Q). The second part of this study focuses on light-induced water transport using optogenetic tools. We explored the use of optogenetic tools to regulate water flow by changing the osmolarity in oocytes. Water flux through AQP1 is driven by the osmotic gradient that results from concentration differences of small molecules or ions. Therefore, we seek to regulate ion concentrations, using optogenetic tools to regulate the flux of water noninvasively. To achieve this, I applied the light-gated cation channels XXM 2.0 and NCR1 2.0 to regulate the concentration of Na+ , while K + channel KCR1 2.0 was used to regulate K + concentration. As Na+ flows into the Xenopus oocytes, the membrane potential of the oocytes becomes positive, and Clcan influx through the light-gated anion channel GtACR1. By combining these optogenetic tools to regulate NaCl or KCl concentrations, I can change the osmolarity inside the oocytes, thus regulating the flux of water. I co-expressed AQP1 with optogenetic tools in the oocytes to accelerate water flux. Overall, I designed three combinations (1: AQP1, XXM 2.0 and GtACR1. 2: AQP1, NCR1 2.0 and GtACR1. 3: AQP1, KCR1 2.0 and GtACR1) to regulate the flow of water in oocytes. The shrinking or swelling of the oocytes can only be achieved when AQP1, light-gated cation channels (XXM 2.0/NCR1 2.0/KCR1 2.0), and light-gated anion channels (GtACR1) are expressed together. The illumination after expression of either or both alone does not result in changes in oocyte morphology. In sum, I demonstrated a novel strategy to manipulate water movement into and out of Xenopus oocytes, non-invasively through illumination. These findings provide a new avenue to interfere with water homeostasis as a means to study related biological phenomena across cell types and organisms.}, subject = {Osmolarit{\"a}t}, language = {en} } @article{DuanNagelGao2019, author = {Duan, Xiaodong and Nagel, Georg and Gao, Shiqiang}, title = {Mutated channelrhodopsins with increased sodium and calcium permeability}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {4}, issn = {2076-3417}, doi = {10.3390/app9040664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197435}, pages = {664}, year = {2019}, abstract = {(1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca\(^{2+}\) conductance or more specific ion permeability are in demand. (2) Methods: In this study, we mutated the conserved aspartate of the transmembrane helix 4 (TM4) within Chronos and PsChR and compared them with published ChR2 aspartate mutants. (3) Results: We found that the ChR2 D156H mutant (XXM) showed enhanced Na\(^+\) and Ca\(^{2+}\) conductance, which was not noticed before, while the D156C mutation (XXL) influenced the Na\(^+\) and Ca\(^{2+}\) conductance only slightly. The aspartate to histidine and cysteine mutations of Chronos and PsChR also influenced their photocurrent, ion permeability, kinetics, and light sensitivity. Most interestingly, PsChR D139H showed a much-improved photocurrent, compared to wild type, and even higher Na+ selectivity to H\(^+\) than XXM. PsChR D139H also showed a strongly enhanced Ca\(^{2+}\) conductance, more than two-fold that of the CatCh. (4) Conclusions: We found that mutating the aspartate of the TM4 influences the ion selectivity of channelrhodopsins. With the large photocurrent and enhanced Na\(^+\) selectivity and Ca\(^{2+}\) conductance, XXM and PsChR D139H are promising powerful optogenetic tools, especially for Ca\(^{2+}\) manipulation.}, language = {en} } @article{ZhuShabalaCuinetal.2016, author = {Zhu, Min and Shabala, Lana and Cuin, Tracey A and Huang, Xin and Zhou, Meixue and Munns, Rana and Shabala, Sergey}, title = {Nax loci affect SOS1-like Na\(^{+}\)/H\(^{+}\) exchanger expression and activity in wheat}, series = {Journal of Experimental Botany}, volume = {67}, journal = {Journal of Experimental Botany}, number = {3}, doi = {10.1093/jxb/erv493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150236}, pages = {835-844}, year = {2016}, abstract = {Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na\(^{+}\) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na\(^{+}\) from the xylem, thus limiting the rates of Na\(^{+}\) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na\(^{+}\)/H\(^{+}\) exchanger in both root cortical and stelar tissues. Net Na\(^{+}\) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na\(^{+}\)/H\(^{+}\) exchanger) and was mirrored by net H\(^{+}\) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na\(^{+}\) content. One enhances the retrieval of Na\(^{+}\) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na\(^{+}\) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na\(^{+}\) delivery to the shoot.}, language = {en} } @article{ZhuShabalaCuinetal.2016, author = {Zhu, Min and Shabala, Lana and Cuin, Tracey A. and Huang, Xin and Zhou, Meixue and Munns, Rana and Shabala, Sergey}, title = {Nax loci affect SOS1-like Na\(^+\)/H\(^+\) exchanger expression and activity in wheat}, series = {Journal of Experimental Botany}, volume = {67}, journal = {Journal of Experimental Botany}, number = {3}, doi = {10.1093/jxb/erv493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190908}, pages = {835-844}, year = {2016}, abstract = {Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na\(^+\) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1; 5 were identified as the respective candidate genes. These transporters retrieve Na\(^+\) from the xylem, thus limiting the rates of Na\(^+\) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na\(^+\)/H\(^+\) exchanger in both root cortical and stelar tissues. Net Na\(^+\) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na\(^+\)/H\(^+\) exchanger) and was mirrored by net H\(^+\) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na\(^+\) content. One enhances the retrieval of Na\(^+\) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na\(^+\) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na\(^+\) delivery to the shoot.}, language = {en} } @article{DorschKrieterLemkeetal.2012, author = {Dorsch, Oliver and Krieter, Detlef H. and Lemke, Horst-Dieter and Fischer, Stefan and Melzer, Nima and Sieder, Christian and Bramlage, Peter and Harenberg, Job}, title = {A multi-center, prospective, open-label, 8-week study of certoparin for anticoagulation during maintenance hemodialysis - the membrane study}, series = {BMC Nephrology}, volume = {13}, journal = {BMC Nephrology}, number = {50}, doi = {10.1186/1471-2369-13-50}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134845}, year = {2012}, abstract = {Background: Adequate anticoagulation is prerequisite for effective hemodialysis to prevent clotting in the extracorporeal circuit. We aimed providing first data on the efficacy and safety of the low-molecular-weight heparin certoparin in this setting. Methods: Multicenter, open-label, 8-week trial. Patients received a single dose of 3,000 IU certoparin i.v. with additional titration steps of 600 IU and/or continuous infusion if necessary. Results: 120 patients were screened, 109 enrolled (median age 71; range 26-90 years) and 106 available for efficacy analyses. The percentage of unsatisfactory dialysis results at 8 weeks due to clotting or bleeding, was 1.9\% (n = 2/106; 95\% confidence interval [CI] 0.23-6.65\%); no major bleeding. 1.9\% had moderate/severe clotting in the lines/bubble catcher and 2.8\% in the dialyser at week 8.15.7 +/- 14.3\% of the dialysis filters' visual surface area was showing redness. In subgroups of patients receiving median doses of 3000 +/- 0, 3000 (2400-6000) and 4200 (3000-6600) IU, plasma aXa levels at baseline, 4 and 8 weeks were 0.24 [ 95\% CI 0.21-0.27], 0.33 [0.27-0.40] and 0.38 [0.33-0.45] aXa IU/ml at 2 h. C-48h was 0.01 [0.01-0.02] aXa IU at all visits. At baseline and 4 weeks AUC(0-48h) was 2.66 [2.19-3.24] and 3.66 [3.00-4.45] aXa IU*h/ml. In 3.0\% of dialyses (n = 83/2724) prolonged fistula compression times were documented. Eight patients (7.34\%) had at least one episode of minor bleeding. 4) 85.3\% of patients had any adverse event, 9.2\% were serious without suspected drug relation; and in 32 patients a drug-relation was suspected. Conclusions: Certoparin appears effective and safe for anticoagulation in patients undergoing maintenance hemodialysis.}, language = {en} } @phdthesis{Neuberger2008, author = {Neuberger, Thomas}, title = {Magnetic Resonance Imaging and Spectroscopy at ultra high fields}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36670}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were presented in detail. Although there are significant additional difficulties that have to be overcome compared to lower frequencies, none of the work presented here would have been possible at lower field strengths.}, subject = {NMR-Tomographie}, language = {en} }