@phdthesis{vandenBerg2020, author = {van den Berg, Anne Maria}, title = {Age-related alterations of the immune system aggravate the myocardial aging process}, doi = {10.25972/OPUS-19362}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193622}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The prevalence of cardiovascular diseases (CVD) increases dramatically with age. Nevertheless, most of the basic research in cardiology has been conducted on young healthy animals which may not necessarily reflect the situation observed in the clinic. The heart undergoes profound changes in elderly, including molecular alterations, myocardial hypertrophy, interstitial fibrosis and functional decline. To date, numerous approaches exist to explain mechanisms of the cardiac aging process whereupon inflammation and immune activity are of increasing interest. Myocardial aging is temporally associated with chronic low-grade systemic inflammation and accumulation of memory T-cells. However, a possible causal relationship between these two phenomena has not yet been investigated. Thus, aim of the present study was to assess how immunological mechanisms contribute to the myocardial aging process. Herein, the healthy murine heart was found to harbor all major resident leukocyte populations, including macrophages (CD45+CD11b+Ly6G-), granulocytes (CD45+ CD11b+Ly6G+), T-cells (CD45+CD11b-CD3e+), B-cells (CD45+CD11b-B220+) at frequencies that largely surpass those found in skeletal muscles. Age-related structural alterations and functional impairment occur simultaneously with significant shifts of the tissue resident leukocyte composition. Gene expression analyses performed on bulk myocardial samples revealed higher expression levels of TNF and INF- suggesting that in situ inflammation plays a role in the myocardial aging process. Aging was furthermore accompanied by a significant increase in size and cellularity of mediastinal, heart draining lymph nodes (med LN). Moreover, the med LNs harvested from aged mice showed a strong accumulation of effector-memory T-cells (CD44+CD62L-), mainly exhibiting a pro-inflammatory phenotype (Foxp3-, TNF+, IFN- γ+). None of these alterations were observed in popliteal lymph nodes of aged mice, indicating that they might be site-specific. Next, to go beyond mere associative evidence and examine underlying mechanisms, the myocardial aging process was comprehensively characterized in mice lacking B- (µMT) or CD4+ T-cells (CD4ko). Our analyses revealed that aged CD4+ T-cell-deficient, but not B-cell-deficient mice, exhibit a lower in situ inflammatory tone and preserved ventricular function, as compared to age-matched wild type controls. No differences in the expression levels of genes related to fibrosis were observed in the groups. Taken together, the results of this study indicate that heart-directed immune responses may spontaneously arise in the elderly, even in the absence of a clear tissue damage or concomitant infection. The T-cell-mediated immunosenescence profile might be particularly associated with age-related myocardial inflammation and functional decline, but not with tissue remodeling. These observations might shed new light on the emerging role of T cells in myocardial diseases, which primarily affect the elderly population.}, language = {en} }