@phdthesis{Strunz2022, author = {Strunz, Jonas}, title = {Quantum point contacts in HgTe quantum wells}, doi = {10.25972/OPUS-27459}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274594}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Quantenpunktkontakte (englisch: quantum point contacts, QPCs) sind eindimensionale Engstellen in einem ansonsten zweidimensionalen Elektronen- oder Lochsystem. Seit der erstmaligen Realisierung in GaAs-basierten zweidimensionalen Elektronengasen sind QPCs sukzessive zu einem Grundbestandteil mesoskopischer Physik geworden und erfahren in einer Vielzahl von Experimenten Anwendung. Jedoch ist es bis zur Anfertigung der vorliegenden Arbeit nicht gelungen, QPCs in der neuen Materialklasse der zweidimensionalen topologischen Isolatoren zu realisieren. In diesen Materialien tritt der sogenannte Quanten-Spin-Hall-Effekt (QSH-Effekt) auf, welcher sich durch die Ausbildung von leitf{\"a}higen, eindimensionalen sowie gleichermaßen spinpolarisierten Zust{\"a}nden an der Bauteilkante auszeichnet, w{\"a}hrend die restlichen Bereiche der Probe isolierend sind. Ein in einem zweidimensionalen topologischen Isolator realisierter QPC kann demgem{\"a}ß daf{\"u}r benutzt werden, die sich stets an der Bauteilkante befindlichen QSH-Randkan{\"a}le einander r{\"a}umlich anzun{\"a}hern, was beispielsweise die Untersuchung potentieller Wechselwirkungseffekte zwischen ebenjenen Randkan{\"a}len erm{\"o}glicht. Die vorliegende Arbeit beschreibt die erstmalig erfolgreich durchgef{\"u}hrte Implementierung einer QPC-Technologie in einem QSH-System. {\"U}berdies werden die neuartigen Bauteile experimentell charakterisiert sowie analysiert. Nach einer in Kapitel 1 erfolgten Einleitung der Arbeit besch{\"a}ftigt sich das nachfolgende Kapitel 2 zun{\"a}chst mit der besonderen Bandstruktur von HgTe. In diesem Kontext wird die Ausbildung der QSH-Phase f{\"u}r HgTe-Quantentr{\"o}ge mit einer invertierten Bandstruktur erl{\"a}utert, welche f{\"u}r deren Auftreten eine Mindesttrogdicke von d_QW > d_c = 6.3 nm aufweisen m{\"u}ssen. Im Anschluss wird das Konzept eines QPCs allgemein eingef{\"u}hrt sowie das zugeh{\"o}rige Transportverhalten analytisch beschrieben. {\"U}berdies werden die Einschr{\"a}nkungen und Randbedingungen diskutiert, welche bei der Realisierung eines QPCs in einem QSH-System Ber{\"u}cksichtigung finden m{\"u}ssen. Darauf folgt die Pr{\"a}sentation des eigens zur QPC-Herstellung entwickelten Lithographieprozesses, welcher auf einer mehrstufigen Anwendung eines f{\"u}r HgTe-Quantentrogstrukturen geeigneten nasschemischen {\"A}tzverfahrens beruht. Die im Nachgang diskutierten Transportmessungen exemplarischer Proben zeigen die erwartete Leitwertquantisierung in Schritten von ΔG ≈ 2e^2/h im Bereich des Leitungsbandes -- sowohl f{\"u}r eine topologische als auch f{\"u}r eine triviale (d_QW < d_c) QPC-Probe. Mit dem Erreichen der Bandl{\"u}cke saturiert der Leitwert f{\"u}r den topologischen QPC um G_QSH ≈ 2e^2/h, wohingegen ebenjener f{\"u}r den Fall des trivialen Bauteils auf G ≈ 0 abf{\"a}llt. Dar{\"u}ber hinaus belegen durchgef{\"u}hrte Messungen des differentiellen Leitwertes einer invertierten QPC-Probe in Abh{\"a}ngigkeit einer Biasspannung die stabile Koexistenz von topologischen und trivialen Transportmoden. Gegenstand von Kapitel 3 ist die Beschreibung der Ausbildung eines QSH-Interferometers in QPCs mit geringer Weite, welche unter Verwendung von Quantentr{\"o}gen mit einer Trogdicke von d_QW = 7 nm hergestellt werden. Die Diskussion von Bandstrukturrechnungen legt dar, dass die r{\"a}umliche Ausdehnung der Randkan{\"a}le von der jeweiligen Position der Fermi-Energie im Bereich der Bandl{\"u}cke abh{\"a}ngt. Hieraus resultiert eine Transportsituation, in welcher -- unter bestimmten Voraussetzungen -- Reservoir-Elektronen mit randomisiertem Spin an beide QSH-Randkan{\"a}le mit gleicher Wahrscheinlichkeit koppeln, was in der Ausbildung eines QSH-Rings resultiert. Diese Ringbildung wird im Rahmen eines durch Plausibilit{\"a}ts{\"u}berpr{\"u}fung getesteten Modells erkl{\"a}rt und spezifiziert. Danach erfolgt eine theoretische Einf{\"u}hrung von drei relevanten Quantenphasen, deren Akkumulation in der Folge f{\"u}r mehrere geeignete QPC-Proben nachgewiesen wird. Es handelt sich hierbei um die Aharonov-Bohm-Phase, um die dynamische Aharonov-Casher-Phase sowie um eine Spin-Bahn-Berry-Phase mit einem Wert von π. Diese experimentellen Ergebnisse stehen dar{\"u}ber hinaus im Einklang mit analytischen Modellbetrachtungen. Das anschließende Kapitel 4 stellt den letzten Teil der Arbeit dar und besch{\"a}ftigt sich mit der Beobachtung einer anomalen Leitwertsignatur, welche f{\"u}r QPC-Proben basierend auf einer Quantentrogdicke von d_QW = 10.5 nm auftritt. Diese Proben zeigen neben der durch die QSH-Phase bedingten Leitwertquantisierung von G_QSH ≈ 2e^2/h ein weiteres Leitwertplateau mit einem Wert von G ≈ e^2/h = 0.5 x G_QSH. Diese sogenannte 0.5-Anomalie ist nur f{\"u}r ein kleines Intervall von QPC-Weiten beobachtbar und wird mit zunehmender Bauteilweite abgeschw{\"a}cht. Weiterf{\"u}hrende Untersuchungen in Abh{\"a}ngigkeit der Temperatur sowie einer angelegten Biasspannung deuten dar{\"u}ber hinaus darauf hin, dass das Auftreten der 0.5-Anomalie mit einem modifizierten topologischen Zustand einhergeht. {\"U}berdies wird eine zus{\"a}tzliche sowie vervollst{\"a}ndigende Charakterisierung dieses Transportregimes durch die Realisierung eines neuartigen Bauteilkonzeptes m{\"o}glich, welches einen QPC in eine standardisierte Hall-Bar-Geometrie integriert. Das Ergebnis der experimentellen Analyse einer solchen Probe verkn{\"u}pft das Auftreten der 0.5-Anomalie mit der R{\"u}ckstreuung eines QSH-Randkanals. Demgem{\"a}ß wird aus Sicht des Einteilchenbildes geschlussfolgert, dass im Kontext der 0.5-Anomalie lediglich ein Randkanal transmittiert wird. Zudem werden zwei theoretische Modelle basierend auf Elektron-Elektron-Wechselwirkungen diskutiert, welche beide jeweils als urs{\"a}chlicher Mechanismus f{\"u}r das Auftreten der 0.5-Anomalie in Frage kommen. Abschließend ist zu deduzieren, dass die Implementierung einer QPC-Technologie in einem QSH-System eine bedeutende Entwicklung im Bereich der Erforschung von zweidimensionalen topologischen Isolatoren darstellt, welche eine Vielzahl zuk{\"u}nftiger Experimente erm{\"o}glicht. So existieren beispielsweise theoretische Vorhersagen, dass QPCs in einem QSH-System die Detektion von Majorana- sowie Para-Fermionen erm{\"o}glichen. {\"U}berdies ist die nachgewiesene Ausbildung eines QSH-Interferometers in geeigneten QPC-Proben eine Beobachtung von großer Folgewirkung. So erm{\"o}glicht die beobachtete dynamische Aharonov-Casher-Phase im QSH-Regime die kontrollierbare Modulation des topologischen Leitwertes, was die konzeptionelle Grundlage eines topologischen Transistors darstellt. Eine weitere Anwendungsm{\"o}glichkeit wird durch die Widerstandsf{\"a}higkeit geometrischer Phasen gegen{\"u}ber Dephasierung er{\"o}ffnet, wodurch die nachgewiesene Spin-Bahn-Berry-Phase mit einem Wert von π im Kontext potentieller Quantencomputerkonzepte von Interesse ist. Dar{\"u}ber hinaus ist die Transmission von nur einem QSH-Randkanal im Zuge des Auftretens der 0.5-Anomalie {\"a}quivalent zu 100 \% Spinpolarisierung, was einen Faktor essentieller Relevanz f{\"u}r die Realisierung spintronischer Anwendungen darstellt. Demgem{\"a}ß beinhaltet die vorliegende Arbeit den experimentellen Nachweis von drei unterschiedlichen Effekten, von welchen jedem einzelnen eine fundamentale Rolle im Rahmen der Entwicklung neuer Generationen logischer Bauelemente zukommen kann -- erm{\"o}glicht durch die Realisierung von QPCs in topologischen HgTe-Quantentr{\"o}gen.}, subject = {Topologischer Isolator}, language = {en} }