@phdthesis{Georgiev2021, author = {Georgiev, Kostadin}, title = {Sustainable management of naturally disturbed forests}, doi = {10.25972/OPUS-24285}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242854}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Owing to climate change, natural forest disturbances and consecutive salvage logging are drastically increasing worldwide, consequently increasing the importance of understanding how these disturbances would affect biodiversity conservation and provision of ecosystem services. In chapter II, I used long-term water monitoring data and mid-term data on α-diversity of twelve species groups to quantify the effects of natural disturbances (windthrow and bark beetle) and salvage logging on concentrations of nitrate and dissolved organic carbon (DOC) in streamwater and α-diversity. I found that natural disturbances led to a temporal increase of nitrate concentrations in streamwater, but these concentrations remained within the health limits recommended by the World Health Organization for drinking water. Salvage logging did not exert any additional impact on nitrate and DOC concentrations, and hence did not affect streamwater quality. Thus, neither natural forest disturbances in watersheds nor associated salvage logging have a harmful effect on the quality of the streamwater used for drinking water. Natural disturbances increased the α-diversity in eight out of twelve species groups. Salvage logging additionally increased the α-diversity of five species groups related to open habitats, but decreased the biodiversity of three deadwood-dependent species groups. In chapter III, I investigated whether salvage logging following natural disturbances (wildfire and windthrow) altered the natural successional trajectories of bird communities. I compiled data on breeding bird assemblages from nine study areas in North America, Europe and Asia, over a period of 17 years and tested whether bird community dissimilarities changed over time for taxonomic, functional and phylogenetic diversity when rare, common and dominant species were weighted differently. I found that salvage logging led to significantly larger dissimilarities than expected by chance and that these dissimilarities persisted over time for rare, common and dominant species, evolutionary lineages, and for rare functional groups. Dissimilarities were highest for rare, followed by common and dominant species. In chapter IV, I investigated how β-diversity of 13 taxonomic groups would differ in intact, undisturbed forests, disturbed, unlogged forests and salvage-logged forests 11 years after a windthrow and salvage logging. The study suggests that both windthrow and salvage logging drive changes in between-treatment β-diversity, whereas windthrow alone seems to drive changes in within-treatment β-diversity. Over a decade after the windthrow at the studied site, the effect of subsequent salvage logging on within-treatment β-diversity was no longer detectable but the effect on between-treatment β-diversity persisted, with more prominent changes in saproxylic groups and rare species than in non-saproxylic groups or common and dominant species. Based on these results, I suggest that salvage logging needs to be carefully weighed against its long-lasting impact on communities of rare species. Also, setting aside patches of naturally disturbed areas is a valuable management alternative as these patches would enable post-disturbance succession of bird communities in unmanaged patches and would promote the conservation of deadwood-dependent species, without posing health risks to drinking water sources.}, subject = {species richness}, language = {en} }