@article{BazihizinaBoehmMessereretal.2022, author = {Bazihizina, Nadia and B{\"o}hm, Jennifer and Messerer, Maxim and Stigloher, Christian and M{\"u}ller, Heike M. and Cuin, Tracey Ann and Maierhofer, Tobias and Cabot, Joan and Mayer, Klaus F. X. and Fella, Christian and Huang, Shouguang and Al-Rasheid, Khaled A. S. and Alquraishi, Saleh and Breadmore, Michael and Mancuso, Stefano and Shabala, Sergey and Ache, Peter and Zhang, Heng and Zhu, Jian-Kang and Hedrich, Rainer and Scherzer, S{\"o}nke}, title = {Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa}, series = {New Phytologist}, volume = {235}, journal = {New Phytologist}, number = {5}, doi = {10.1111/nph.18205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287222}, pages = {1822 -- 1835}, year = {2022}, abstract = {Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na\(^{+}\)), chloride (Cl\(^{-}\)), potassium (K\(^{+}\)) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.}, language = {en} } @article{KarimiFreundWageretal.2021, author = {Karimi, Sohail M. and Freund, Matthias and Wager, Brittney M. and Knoblauch, Michael and Fromm, J{\"o}rg and M. Mueller, Heike and Ache, Peter and Krischke, Markus and Mueller, Martin J. and M{\"u}ller, Tobias and Dittrich, Marcus and Geilfus, Christoph-Martin and Alfaran, Ahmed H. and Hedrich, Rainer and Deeken, Rosalia}, title = {Under salt stress guard cells rewire ion transport and abscisic acid signaling}, series = {New Phytologist}, volume = {231}, journal = {New Phytologist}, number = {3}, doi = {10.1111/nph.17376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259635}, pages = {1040-1055}, year = {2021}, abstract = {Soil salinity is an increasingly global problem which hampers plant growth and crop yield. Plant productivity depends on optimal water-use efficiency and photosynthetic capacity balanced by stomatal conductance. Whether and how stomatal behavior contributes to salt sensitivity or tolerance is currently unknown. This work identifies guard cell-specific signaling networks exerted by a salt-sensitive and salt-tolerant plant under ionic and osmotic stress conditions accompanied by increasing NaCl loads. We challenged soil-grown Arabidopsis thaliana and Thellungiella salsuginea plants with short- and long-term salinity stress and monitored genome-wide gene expression and signals of guard cells that determine their function. Arabidopsis plants suffered from both salt regimes and showed reduced stomatal conductance while Thellungiella displayed no obvious stress symptoms. The salt-dependent gene expression changes of guard cells supported the ability of the halophyte to maintain high potassium to sodium ratios and to attenuate the abscisic acid (ABA) signaling pathway which the glycophyte kept activated despite fading ABA concentrations. Our study shows that salinity stress and even the different tolerances are manifested on a single cell level. Halophytic guard cells are less sensitive than glycophytic guard cells, providing opportunities to manipulate stomatal behavior and improve plant productivity.}, language = {en} } @article{GhirardoNosenkoKreuzwieseretal.2021, author = {Ghirardo, Andrea and Nosenko, Tetyana and Kreuzwieser, J{\"u}rgen and Winkler, J. Barbro and Kruse, J{\"o}rg and Albert, Andreas and Merl-Pham, Juliane and Lux, Thomas and Ache, Peter and Zimmer, Ina and Alfarraj, Saleh and Mayer, Klaus F. X. and Hedrich, Rainer and Rennenberg, Heinz and Schnitzler, J{\"o}rg-Peter}, title = {Protein expression plasticity contributes to heat and drought tolerance of date palm}, series = {Oecologia}, volume = {197}, journal = {Oecologia}, number = {4}, issn = {0029-8549}, doi = {10.1007/s00442-021-04907-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308075}, pages = {903-919}, year = {2021}, abstract = {Climate change is increasing the frequency and intensity of warming and drought periods around the globe, currently representing a threat to many plant species. Understanding the resistance and resilience of plants to climate change is, therefore, urgently needed. As date palm (Phoenix dactylifera) evolved adaptation mechanisms to a xeric environment and can tolerate large diurnal and seasonal temperature fluctuations, we studied the protein expression changes in leaves, volatile organic compound emissions, and photosynthesis in response to variable growth temperatures and soil water deprivation. Plants were grown under controlled environmental conditions of simulated Saudi Arabian summer and winter climates challenged with drought stress. We show that date palm is able to counteract the harsh conditions of the Arabian Peninsula by adjusting the abundances of proteins related to the photosynthetic machinery, abiotic stress and secondary metabolism. Under summer climate and water deprivation, these adjustments included efficient protein expression response mediated by heat shock proteins and the antioxidant system to counteract reactive oxygen species formation. Proteins related to secondary metabolism were downregulated, except for the P. dactylifera isoprene synthase (PdIspS), which was strongly upregulated in response to summer climate and drought. This study reports, for the first time, the identification and functional characterization of the gene encoding for PdIspS, allowing future analysis of isoprene functions in date palm under extreme environments. Overall, the current study shows that reprogramming of the leaf protein profiles confers the date palm heat- and drought tolerance. We conclude that the protein plasticity of date palm is an important mechanism of molecular adaptation to environmental fluctuations.}, language = {en} }