@phdthesis{Pfenning2008, author = {Pfenning, Brenda}, title = {Seasonal life-history adaptation in the water strider GERRIS LACUSTRIS}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27900}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Insects living in temperate latitudes need to adjust their life-history to a seasonally variable environment. Reproduction, growth, and development have to be completed within the limited period where environmental conditions are favourable while climatically adverse conditions have to be spent in a state of diapause. Consequently, questions how individuals adapt their life-history to seasonality and which mechanisms underlie the responses to seasonal cues, like photoperiod, are important issues in the study of life-history strategies. This thesis focuses on the life-history adaptation to seasonality in the wing-dimorphic common pond skater Gerris lacustris L. (Heteroptera: Gerridae). Using a combination of field and laboratory studies as well as mathematical modelling, it is adressed how variation in the availability of thermal energy impacts on various aspects of larval development such as accumulated thermal energy (i.e. physiological development time), developmental pathway (direct reproduction vs. diapause) and wing dimorphism.}, subject = {Wanzen}, language = {en} } @article{PoethkePfenningHovestadt2007, author = {Poethke, Hans J. and Pfenning, Brenda and Hovestadt, Thomas}, title = {The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48225}, year = {2007}, abstract = {Questions: What are the relative contributions of kin selection and individual selection to the evolution of dispersal rates in fragmented landscapes? How do environmental parameters influence the relative contributions of both evolutionary forces? Features of the model: Individual-based simulation model of a metapopulation. Logistic local growth dynamics and density-dependent dispersal. An optional shuffling algorithm allows the continuous destruction of any genetic structure in the metapopulation. Ranges of key variables: Depending on dispersal mortality (0.05-0.4) and the strength of environmental fluctuations, mean dispersal probability varied between 0.05 and 0.5. Conclusions: For local population sizes of 100 individuals, kin selection alone could account for dispersal probabilities of up to 0.1. It may result in a ten-fold increase of optimal dispersal rates compared with those predicted on the basis of individual selection alone. Such a substantial contribution of kin selection to dispersal is restricted to cases where the overall dispersal probabilities are small (textless 0.1). In the latter case, as much as 30\% of the total fitness of dispersing individuals could arise from the increased reproduction of kin left in the natal patch.}, language = {en} }