@phdthesis{Roesler2020, author = {R{\"o}sler, Lara}, title = {Behavioral and Neural Mechanisms of Social Attention}, doi = {10.25972/OPUS-21609}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216092}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Humans in our environment are of special importance to us. Even if our minds are fixated on tasks unrelated to their presence, our attention will likely be drawn towards other people's appearances and their actions. While we might remain unaware of this attentional bias at times, various studies have demonstrated the preferred visual scanning of other humans by recording eye movements in laboratory settings. The present thesis aims to investigate the circumstances under and the mechanisms by which this so-called social attention operates. The first study demonstrates that social features in complex naturalistic scenes are prioritized in an automatic fashion. After 200 milliseconds of stimulus presentation, which is too brief for top-down processing to intervene, participants targeted image areas depicting humans significantly more often than would be expected from a chance distribution of saccades. Additionally, saccades towards these areas occurred earlier in time than saccades towards non-social image regions. In the second study, we show that human features receive most fixations even when bottom-up information is restricted; that is, even when only the fixated region was visible and the remaining parts of the image masked, participants still fixated on social image regions longer than on regions without social cues. The third study compares the influence of real and artificial faces on gaze patterns during the observation of dynamic naturalistic videos. Here we find that artificial faces, belonging to humanlike statues or machines, significantly predicted gaze allocation but to a lesser extent than real faces. In the fourth study, we employed functional magnetic resonance imaging to investigate the neural correlates of reflexive social attention. Analyses of the evoked blood-oxygenation level dependent responses pointed to an involvement of striate and extrastriate visual cortices in the encoding of social feature space. Collectively, these studies help to elucidate under which circumstances social features are prioritized in a laboratory setting and how this prioritization might be achieved on a neuronal level. The final experimental chapter addresses the question whether these laboratory findings can be generalized to the real world. In this study, participants were introduced to a waiting room scenario in which they interacted with a confederate. Eye movement analyses revealed that gaze behavior heavily depended on the social context and were influenced by whether an interaction is currently desired. We further did not find any evidence for altered gaze behavior in socially anxious participants. Alleged gaze avoidance or hypervigilance in social anxiety might thus represent a laboratory phenomenon that occurs only under very specific real-life conditions. Altogether the experiments described in the present thesis thus refine our understanding of social attention and simultaneously challenge the inferences we can draw from laboratory research.}, subject = {Aufmerksamkeit}, language = {en} } @article{RoeslerRuboGamer2019, author = {R{\"o}sler, Lara and Rubo, Marius and Gamer, Matthias}, title = {Artificial faces predict gaze allocation in complex dynamic scenes}, series = {Frontiers in Psychology}, volume = {10}, journal = {Frontiers in Psychology}, number = {2877}, issn = {1664-1078}, doi = {10.3389/fpsyg.2019.02877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193024}, year = {2019}, abstract = {Both low-level physical saliency and social information, as presented by human heads or bodies, are known to drive gaze behavior in free-viewing tasks. Researchers have previously made use of a great variety of face stimuli, ranging from photographs of real humans to schematic faces, frequently without systematically differentiating between the two. In the current study, we used a Generalized Linear Mixed Model (GLMM) approach to investigate to what extent schematic artificial faces can predict gaze when they are presented alone or in competition with real human faces. Relative differences in predictive power became apparent, while GLMMs suggest substantial effects for real and artificial faces in all conditions. Artificial faces were accordingly less predictive than real human faces but still contributed significantly to gaze allocation. These results help to further our understanding of how social information guides gaze in complex naturalistic scenes.}, language = {en} } @article{RoeslerEndGamer2017, author = {R{\"o}sler, Lara and End, Albert and Gamer, Matthias}, title = {Orienting towards social features in naturalistic scenes is reflexive}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0182037}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170586}, pages = {e0182037}, year = {2017}, abstract = {Saliency-based models of visual attention postulate that, when a scene is freely viewed, attention is predominantly allocated to those elements that stand out in terms of their physical properties. However, eye-tracking studies have shown that saliency models fail to predict gaze behavior accurately when social information is included in an image. Notably, gaze pattern analyses revealed that depictions of human beings are heavily prioritized independent of their low-level physical saliency. What remains unknown, however, is whether the prioritization of such social features is a reflexive or a voluntary process. To investigate the early stages of social attention in more detail, participants viewed photographs of naturalistic scenes with and without social features (i.e., human heads or bodies) for 200 ms while their eye movements were being recorded. We observed significantly more first eye movements to regions containing social features than would be expected from a chance level distribution of saccades. Additionally, a generalized linear mixed model analysis revealed that the social content of a region better predicted first saccade direction than its saliency suggesting that social features partially override the impact of low-level physical saliency on gaze patterns. Given the brief image presentation time that precluded visual exploration, our results provide compelling evidence for a reflexive component in social attention. Moreover, the present study emphasizes the importance of considering social influences for a more coherent understanding of human attentional selection.}, language = {en} }