@article{YeKeicherGentschevetal.2021, author = {Ye, Mingyu and Keicher, Markus and Gentschev, Ivaylo and Szalay, Aladar A.}, title = {Efficient selection of recombinant fluorescent vaccinia virus strains and rapid virus titer determination by using a multi-well plate imaging system}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {8}, issn = {2227-9059}, doi = {10.3390/biomedicines9081032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245104}, year = {2021}, abstract = {Engineered vaccinia virus (VACV) strains are used extensively as vectors for the development of novel cancer vaccines and cancer therapeutics. In this study, we describe for the first time a high-throughput approach for both fluorescent rVACV generation and rapid viral titer measurement with the multi-well plate imaging system, IncuCyte\(^®\)S3. The isolation of a single, well-defined plaque is critical for the generation of novel recombinant vaccinia virus (rVACV) strains. Unfortunately, current methods of rVACV engineering via plaque isolation are time-consuming and laborious. Here, we present a modified fluorescent viral plaque screening and selection strategy that allows one to generally obtain novel fluorescent rVACV strains in six days, with a minimum of just four days. The standard plaque assay requires chemicals for fixing and staining cells. Manual plaque counting based on visual inspection of the cell culture plates is time-consuming. Here, we developed a fluorescence-based plaque assay for quantifying the vaccinia virus that does not require a cell staining step. This approach is less toxic to researchers and is reproducible; it is thus an improvement over the traditional assay. Lastly, plaque counting by virtue of a fluorescence-based image is very convenient, as it can be performed directly on the computer.}, language = {en} } @article{PetrovGentschevVyalkovaetal.2020, author = {Petrov, Ivan and Gentschev, Ivaylo and Vyalkova, Anna and Elashry, Mohamed I. and Klymiuk, Michele C. and Arnhold, Stefan and Szalay, Aladar A.}, title = {Canine Adipose-Derived Mesenchymal Stem Cells (cAdMSCs) as a "Trojan Horse" in Vaccinia Virus Mediated Oncolytic Therapy against Canine Soft Tissue Sarcomas}, series = {Viruses}, volume = {12}, journal = {Viruses}, number = {7}, doi = {10.3390/v12070750}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236007}, year = {2020}, abstract = {Several oncolytic viruses (OVs) including various human and canine adenoviruses, canine distemper virus, herpes-simplex virus, reovirus, and members of the poxvirus family, such as vaccinia virus and myxoma virus, have been successfully tested for canine cancer therapy in preclinical and clinical settings. The success of the cancer virotherapy is dependent on the ability of oncolytic viruses to overcome the attacks of the host immune system, to preferentially infect and lyse cancer cells, and to initiate tumor-specific immunity. To date, several different strategies have been developed to overcome the antiviral host defense barriers. In our study, we used canine adipose-derived mesenchymal stem cells (cAdMSCs) as a "Trojan horse" for the delivery of oncolytic vaccinia virus Copenhagen strain to achieve maximum oncolysis against canine soft tissue sarcoma (CSTS) tumors. A single systemic administration of vaccinia virus-loaded cAdMSCs was found to be safe and led to the significant reduction and substantial inhibition of tumor growth in a CSTS xenograft mouse model. This is the first example that vaccinia virus-loaded cAdMSCs could serve as a therapeutic agent against CSTS tumors.}, language = {en} } @article{DraganovSantidrianMinevetal.2019, author = {Draganov, Dobrin D. and Santidrian, Antonio F. and Minev, Ivelina and Duong, Nguyen and Kilinc, Mehmet Okyay and Petrov, Ivan and Vyalkova, Anna and Lander, Elliot and Berman, Mark and Minev, Boris and Szalay, Aladar A.}, title = {Delivery of oncolytic vaccinia virus by matched allogeneic stem cells overcomes critical innate and adaptive immune barriers}, series = {Journal of Translational Medicine}, volume = {17}, journal = {Journal of Translational Medicine}, issn = {100}, doi = {10.1186/s12967-019-1829-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226312}, year = {2019}, abstract = {Background Previous studies have identified IFNγ as an important early barrier to oncolytic viruses including vaccinia. The existing innate and adaptive immune barriers restricting oncolytic virotherapy, however, can be overcome using autologous or allogeneic mesenchymal stem cells as carrier cells with unique immunosuppressive properties. Methods To test the ability of mesenchymal stem cells to overcome innate and adaptive immune barriers and to successfully deliver oncolytic vaccinia virus to tumor cells, we performed flow cytometry and virus plaque assay analysis of ex vivo co-cultures of stem cells infected with vaccinia virus in the presence of peripheral blood mononuclear cells from healthy donors. Comparative analysis was performed to establish statistically significant correlations and to evaluate the effect of stem cells on the activity of key immune cell populations. Results Here, we demonstrate that adipose-derived stem cells (ADSCs) have the potential to eradicate resistant tumor cells through a combination of potent virus amplification and sensitization of the tumor cells to virus infection. Moreover, the ADSCs demonstrate ability to function as a virus-amplifying Trojan horse in the presence of both autologous and allogeneic human PBMCs, which can be linked to the intrinsic immunosuppressive properties of stem cells and their unique potential to overcome innate and adaptive immune barriers. The clinical application of ready-to-use ex vivo expanded allogeneic stem cell lines, however, appears significantly restricted by patient-specific allogeneic differences associated with the induction of potent anti-stem cell cytotoxic and IFNγ responses. These allogeneic responses originate from both innate (NK)- and adaptive (T)- immune cells and might compromise therapeutic efficacy through direct elimination of the stem cells or the induction of an anti-viral state, which can block the potential of the Trojan horse to amplify and deliver vaccinia virus to the tumor. Conclusions Overall, our findings and data indicate the feasibility to establish simple and informative assays that capture critically important patient-specific differences in the immune responses to the virus and stem cells, which allows for proper patient-stem cell matching and enables the effective use of off-the-shelf allogeneic cell-based delivery platforms, thus providing a more practical and commercially viable alternative to the autologous stem cell approach.}, language = {en} } @article{MinevLanderFelleretal.2019, author = {Minev, Boris R. and Lander, Elliot and Feller, John F. and Berman, Mark and Greenwood, Bernadette M. and Minev, Ivelina and Santidrian, Antonio F. and Nguyen, Duong and Draganov, Dobrin and Killinc, Mehmet O. and Vyalkova, Anna and Kesari, Santosh and McClay, Edward and Carabulea, Gabriel and Marincola, Francesco M. and Butterfield, Lisa H. and Szalay, Aladar A.}, title = {First-in-human study of TK-positive oncolytic vaccinia virus delivered by adipose stromal vascular fraction cells}, series = {Journal of Translational Medicine}, volume = {17}, journal = {Journal of Translational Medicine}, doi = {10.1186/s12967-019-2011-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224105}, year = {2019}, abstract = {Background ACAM2000, a thymidine kinase (TK)-positive strain of vaccinia virus, is the current smallpox vaccine in the US. Preclinical testing demonstrated potent oncolytic activity of ACAM2000 against several tumor types. This Phase I clinical trial of ACAM2000 delivered by autologous adipose stromal vascular fraction (SVF) cells was conducted to determine the safety and feasibility of such a treatment in patients with advanced solid tumors or acute myeloid leukemia (AML). Methods Twenty-four patients with solid tumors and two patients with AML participated in this open-label, non-randomized dose-escalation trial. All patients were treated with SVF derived from autologous fat and incubated for 15 min to 1 h with ACAM2000 before application. Six patients received systemic intravenous application only, one patient received intra-tumoral application only, 15 patients received combination intravenous with intra-tumoral deployment, 3 patients received intravenous and intra-peritoneal injection and 1 patient received intravenous, intra-tumoral and intra-peritoneal injections. Safety at each dose level of ACAM2000 (1.4 × 106 plaque-forming units (PFU) to 1.8 × 107 PFU) was evaluated. Blood samples for PK assessments, flow cytometry and cytokine analysis were collected at baseline and 1 min, 1 h, 1 day, 1 week, 1 month, 3 months and 6 months following treatment. Results No serious toxicities (> grade 2) were reported. Seven patients reported an adverse event (AE) in this study: self-limiting skin rashes, lasting 7 to 18 days—an expected adverse reaction to ACAM2000. No AEs leading to study discontinuation were reported. Viral DNA was detected in all patients' blood samples immediately following treatment. Interestingly, in 8 patients viral DNA disappeared 1 day and re-appeared 1 week post treatment, suggesting active viral replication at tumor sites, and correlating with longer survival of these patients. No major increase in cytokine levels or correlation between cytokine levels and skin rashes was noted. We were able to assess some initial efficacy signals, especially when the ACAM2000/SVF treatment was combined with checkpoint inhibition. Conclusions Treatment with ACAM2000/SVF in patients with advanced solid tumors or AML is safe and well tolerated, and several patients had signals of an anticancer effect. These promising initial clinical results merit further investigation of therapeutic utility. Trial registration Retrospectively registered (ISRCTN\#10201650) on October 22, 2018.}, language = {en} } @article{CecilGentschevAdelfingeretal.2019, author = {Cecil, Alexander and Gentschev, Ivaylo and Adelfinger, Marion and Dandekar, Thomas and Szalay, Aladar A.}, title = {Vaccinia virus injected human tumors: oncolytic virus efficiency predicted by antigen profiling analysis fitted boolean models}, series = {Bioengineered}, volume = {10}, journal = {Bioengineered}, number = {1}, doi = {10.1080/21655979.2019.1622220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200507}, pages = {190-196}, year = {2019}, abstract = {Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a promising approach for cancer therapy. Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a therapeutic potential in treating human prostate and hepatocellular carcinomas in xenografted mice. In this study, we describe the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus-injected human tumors. Antigen profiling data of vaccinia virus GLV-1h68-injected human xenografted mice were obtained, analyzed and used to calculate differences in the tumor growth signaling network by tumor type and gender. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, the T-killer cell mediated cell death, Interferon and Interleukin signaling networks. The in silico findings conform very well with in vivo findings of tumor growth. Similar to a previously published analysis of vaccinia virus-injected canine tumors, we were able to confirm the suitability of our boolean modeling for prediction of human tumor growth after virus infection in the current study as well. In summary, these findings indicate that our boolean models could be a useful tool for testing of the efficacy of VACV-mediated cancer therapy already before its use in human patients.}, language = {en} } @article{TsonevaMinevFrentzenetal.2017, author = {Tsoneva, Desislava and Minev, Boris and Frentzen, Alexa and Zhang, Qian and Wege, Anja K. and Szalay, Aladar A.}, title = {Humanized Mice with Subcutaneous Human Solid Tumors for Immune Response Analysis of Vaccinia Virus-Mediated Oncolysis}, series = {Molecular Therapy Oncolytics}, volume = {5}, journal = {Molecular Therapy Oncolytics}, doi = {10.1016/j.omto.2017.03.001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170786}, pages = {41-61}, year = {2017}, abstract = {Oncolytic vaccinia virus (VACV) therapy is an alternative cancer treatment modality that mediates targeted tumor destruction through a tumor-selective replication and an induction of anti-tumor immunity. We developed a humanized tumor mouse model with subcutaneous human tumors to analyze the interactions of VACV with the developing tumors and human immune system. A successful systemic reconstitution with human immune cells including functional T cells as well as development of tumors infiltrated with human T and natural killer (NK) cells was observed. We also demonstrated successful in vivo colonization of such tumors with systemically administered VACVs. Further, a new recombinant GLV-1h376 VACV encoding for a secreted human CTLA4-blocking single-chain antibody (CTLA4 scAb) was tested. Surprisingly, although proving CTLA4 scAb's in vitro binding ability and functionality in cell culture, beside the significant increase of CD56\(^{bright}\) NK cell subset, GLV-1h376 was not able to increase cytotoxic T or overall NK cell levels at the tumor site. Importantly, the virus-encoded β-glucuronidase as a measure of viral titer and CTLA4 scAb amount was demonstrated. Therefore, studies in our "patient-like" humanized tumor mouse model allow the exploration of newly designed therapy strategies considering the complex relationships between the developing tumor, the oncolytic virus, and the human immune system.}, language = {en} } @article{KilincEhrigPessianetal.2016, author = {Kilinc, Mehmet Okyay and Ehrig, Klaas and Pessian, Maysam and Minev, Boris R. and Szalay, Aladar A.}, title = {Colonization of xenograft tumors by oncolytic vaccinia virus (VACV) results in enhanced tumor killing due to the involvement of myeloid cells}, series = {Journal of Translational Medicine}, volume = {14}, journal = {Journal of Translational Medicine}, number = {340}, doi = {10.1186/s12967-016-1096-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168914}, year = {2016}, abstract = {Background The mechanisms by which vaccinia virus (VACV) interacts with the innate immune components are complex and involve different mechanisms. iNOS-mediated NO production by myeloid cells is one of the central antiviral mechanisms and this study aims to investigate specifically whether iNOS-mediated NO production by myeloid cells, is involved in tumor eradication following the virus treatment. Methods Human colon adenocarcinoma (HCT-116) xenograft tumors were infected by VACV. Infiltration of iNOS\(^{+}\) myeloid cell population into the tumor, and virus titer was monitored following the treatment. Single-cell suspensions were stained for qualitative and quantitative flow analysis. The effect of different myeloid cell subsets on tumor growth and colonization were investigated by depletion studies. Finally, in vitro culture experiments were carried out to study NO production and tumor cell killing. Student's t test was used for comparison between groups in all of the experiments. Results Infection of human colon adenocarcinoma (HCT-116) xenograft tumors by VACV has led to recruitment of many CD11b\(^{+}\) ly6G\(^{+}\) myeloid-derived suppressor cells (MDSCs), with enhanced iNOS expression in the tumors, and to an increased intratumoral virus titer between days 7 and 10 post-VACV therapy. In parallel, both single and multiple rounds of iNOS-producing cell depletions caused very rapid tumor growth within the same period after virus injection, indicating that VACV-induced iNOS\(^{+}\) MDSCs could be an important antitumor effector component. A continuous blockade of iNOS by its specific inhibitor, L-NIL, showed similar tumor growth enhancement 7-10 days post-infection. Finally, spleen-derived iNOS+ MDSCs isolated from virus-injected tumor bearing mice produced higher amounts of NO and effectively killed HCT-116 cells in in vitro transwell experiments. Conclusions We initially hypothesized that NO could be one of the factors that limits active spreading of the virus in the cancerous tissue. In contrast to our initial hypothesis, we observed that PMN-MDSCs were the main producer of NO through iNOS and NO provided a beneficial antitumor effect, The results strongly support an important novel role for VACV infection in the tumor microenvironment. VACV convert tumor-promoting MDSCs into tumor-killing cells by inducing higher NO production.}, language = {en} } @article{KoberRohnWeibeletal.2015, author = {Kober, Christina and Rohn, Susanne and Weibel, Stephanie and Geissinger, Ulrike and Chen, Nanhai G. and Szalay, Aladar A.}, title = {Microglia and astrocytes attenuate the replication of the oncolytic vaccinia virus LIVP 1.1.1 in murine GL261 gliomas by acting as vaccinia virus traps}, series = {Journal of Translational Medicine}, volume = {13}, journal = {Journal of Translational Medicine}, number = {216}, doi = {10.1186/s12967-015-0586-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126517}, year = {2015}, abstract = {Background Oncolytic virotherapy is a novel approach for the treatment of glioblastoma multiforme (GBM) which is still a fatal disease. Pathologic features of GBM are characterized by the infiltration with microglia/macrophages and a strong interaction between immune- and glioma cells. The aim of this study was to determine the role of microglia and astrocytes for oncolytic vaccinia virus (VACV) therapy of GBM. Methods VACV LIVP 1.1.1 replication in C57BL/6 and \(Foxn1^{nu/nu}\) mice with and without GL261 gliomas was analyzed. Furthermore, immunohistochemical analysis of microglia and astrocytes was investigated in non-, mock-, and LIVP 1.1.1-infected orthotopic GL261 gliomas in C57BL/6 mice. In cell culture studies virus replication and virus-mediated cell death of GL261 glioma cells was examined, as well as in BV-2 microglia and IMA2.1 astrocytes with M1 or M2 phenotypes. Co-culture experiments between BV-2 and GL261 cells and apoptosis/necrosis studies were performed. Organotypic slice cultures with implanted GL261 tumor spheres were used as additional cell culture system. Results We discovered that orthotopic GL261 gliomas upon intracranial virus delivery did not support replication of LIVP 1.1.1, similar to VACV-infected brains without gliomas. In addition, recruitment of \(Iba1^+\) microglia and \(GFAP^+\) astrocytes to orthotopically implanted GL261 glioma sites occurred already without virus injection. GL261 cells in culture showed high virus replication, while replication in BV-2 and IMA2.1 cells was barely detectable. The reduced viral replication in BV-2 cells might be due to rapid VACV-induced apoptotic cell death. In BV-2 and IMA 2.1 cells with M1 phenotype a further reduction of virus progeny and virus-mediated cell death was detected. Application of BV-2 microglial cells with M1 phenotype onto organotypic slice cultures with implanted GL261 gliomas resulted in reduced infection of BV-2 cells, whereas GL261 cells were well infected. Conclusion Our results indicate that microglia and astrocytes, dependent on their activation state, may preferentially clear viral particles by immediate uptake after delivery. By acting as VACV traps they further reduce efficient virus infection of the tumor cells. These findings demonstrate that glia cells need to be taken into account for successful GBM therapy development.}, language = {en} } @article{KirscherDeanBenScadengetal.2015, author = {Kirscher, Lorenz and De{\´a}n-Ben, Xos{\´e} Luis and Scadeng, Miriam and Zaremba, Angelika and Zhang, Qian and Kober, Christina and Fehm, Thomas Felix and Razansky, Daniel and Ntziachristos, Vasilis and Stritzker, Jochen and Szalay, Aladar A.}, title = {Doxycycline Inducible Melanogenic Vaccinia Virus as Theranostic Anti-Cancer Agent}, series = {Theranostics}, volume = {5}, journal = {Theranostics}, number = {10}, doi = {10.7150/thno.12533}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124987}, pages = {1045-1057}, year = {2015}, abstract = {We reported earlier the diagnostic potential of a melanogenic vaccinia virus based system in magnetic resonance (MRI) and optoacoustic deep tissue imaging (MSOT). Since melanin overproduction lead to attenuated virus replication, we constructed a novel recombinant vaccinia virus strain (rVACV), GLV-1h462, which expressed the key enzyme of melanogenesis (tyrosinase) under the control of an inducible promoter-system. In this study melanin production was detected after exogenous addition of doxycycline in two different tumor xenograft mouse models. Furthermore, it was confirmed that this novel vaccinia virus strain still facilitated signal enhancement as detected by MRI and optoacoustic tomography. At the same time we demonstrated an enhanced oncolytic potential compared to the constitutively melanin synthesizing rVACV system.}, language = {en} } @article{AdelfingerBesslerCeciletal.2015, author = {Adelfinger, Marion and Bessler, Simon and Cecil, Alexander and Langbein-Laugwitz, Johanna and Frentzen, Alexa and Gentschev, Ivaylo and Szalay, Aladar A.}, title = {Preclinical Testing Oncolytic Vaccinia Virus Strain GLV-5b451 Expressing an Anti-VEGF Single-Chain Antibody for Canine Cancer Therapy}, series = {Viruses}, volume = {7}, journal = {Viruses}, doi = {10.3390/v7072811}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125705}, pages = {4075-4092}, year = {2015}, abstract = {Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for canine cancer therapy. Here we describe, for the first time, the characterization and the use of VACV strain GLV-5b451 expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as therapeutic agent against different canine cancers. Cell culture data demonstrated that GLV-5b451 efficiently infected and destroyed all four tested canine cancer cell lines including: mammary carcinoma (MTH52c), mammary adenoma (ZMTH3), prostate carcinoma (CT1258), and soft tissue sarcoma (STSA-1). The GLV-5b451 virus-mediated production of GLAF-2 antibody was observed in all four cancer cell lines. In addition, this antibody specifically recognized canine VEGF. Finally, in canine soft tissue sarcoma (CSTS) xenografted mice, a single systemic administration of GLV-5b451 was found to be safe and led to anti-tumor effects resulting in the significant reduction and substantial long-term inhibition of tumor growth. A CD31-based immuno-staining showed significantly decreased neo-angiogenesis in GLV-5b451-treated tumors compared to the controls. In summary, these findings indicate that GLV-5b451 has potential for use as a therapeutic agent in the treatment of CSTS.}, language = {en} }