@article{PoethkeHovestadtMitesser2003, author = {Poethke, Hans-Joachim and Hovestadt, Thomas and Mitesser, Oliver}, title = {Local extinction and the evolution of dispersal rates: Causes and correlations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47718}, year = {2003}, abstract = {We present the results of individual-based simulation experiments on the evolution of dispersal rates of organisms living in metapopulations. We find conflicting results regarding the relationship between local extinction rate and evolutionarily stable (ES) dispersal rate depending on which principal mechanism causes extinction: if extinction is caused by environmental catastrophes eradicating local populations, we observe a positive correlation between extinction and ES dispersal rate; if extinction is a consequence of stochastic local dynamics and environmental fluctuations, the correlation becomes ambiguous; and in cases where extinction is caused by dispersal mortality, a negative correlation between local extinction rate and ES dispersal rate emerges. We conclude that extinction rate, which both affects and is affected by dispersal rates, is not an ideal predictor for optimal dispersal rates.}, subject = {Ausbreitung}, language = {en} } @phdthesis{Brandt2003, author = {Brandt, S{\"o}nke}, title = {Metamorphic evolution of ultrahigh-temperature granulite facies and upper amphibolite facies rocks of the Epupa Complex, NW Namibia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10930}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {The high-grade metamorphic Epupa Complex (EC) of north-western Namibia constitutes the south-western margin of the Archean to Proterozoic Congo Craton. The north-eastern portion of the EC has been geochemically and petrologically investigated in order to reconstruct its tectono-metamorphic evolution. Two distinct metamorphic units have been recognized, which are separated by ductile shear zones: (1) Upper amphibolite facies rocks (Orue Unit) and (2) ultrahigh-temperature (UHT) granulite facies rocks (Epembe Unit). The rocks of the EC are transsected by a large anorthosite massif, the Kunene Intrusive Complex (KIC). The Orue Unit and the Epembe Unit were affected by two distinct Mesoproterozoic metamorphic events, as is evident from differences in their metamorphic grade, in the P-T paths and in the age of peak-metamorphism: (1) The Orue Unit consists of a Palaeoproterozoic volcano-sedimentary sequence, which was intruded by large masses of I-type granitoids and by rare mafic dykes. During the Mesoproterozoic (1390-1318 Ma) the Orue Unit rocks underwent upper amphibolite facies metamorphism. The volcano-sedimentary sequence is constituted by interlayered basaltic amphibolites and rhyolitic felsic gneisses, with intercalations of migmatitic metagreywackes, migmatitic metapelites, metaarkoses and calc-silicate rocks. The Orue Unit was subdivided into three parts, which record similar heating-cooling paths but represent individual crustal levels: Heating led to the partial replacement of amphibole, biotite and muscovite through dehydration melting reactions. The peak-metamorphic P-T conditions of c. 700°C, 6.5 +/- 1.0 kbar (south-eastern part), c. 820°C, 8 +/- 0.5 kbar (south-western part) and c. 800°C, 6.0 +/- 1.0 kbar (northern part) correlate well with the mineral assemblage in the metapelites, i.e. Grt-Bt-Sil gneisses and schist in the south-eastern and south-western region and (Grt-)Crd-Bt gneisses in the northern part. Peak-metamorphism was followed by retrograde cooling to middle amphibolite facies conditions. Contact metamorphism, related with the intrusion of the anorthosites, is restricted to the direct contact to the KIC and recorded by massive metapelitic Grt-Sil-Crd felses, formed under upper amphibolite facies conditions (c. 750°C, c. 6.5 kbar). (2) The Epembe Unit consists of a Palaeoproterozoic volcano-sedimentary succession, which was intruded by small bodies of S-type granitoids and by andesitic dykes. All these rocks underwent UHT granulite facies metamorphism during the early Mesoproterozoic (1520-1447 Ma). The volcano-sedimentary succession is dominated by interlayered basaltic two-pyroxene granulites and rhyolitic felsic granulites. Migmatitic metapelites and metagreywackes are intercalated in the metavolcanites. Sapphirine-bearing MgAl-rich gneisses occur as restitic schlieren in the migmatitic metagreywackes. Reconstructed anti-clockwise P-T paths are subdivided into several distinct stages: During prograde near-isobaric heating to UHT conditions at c. 7 kbar biotite- or hornblende-bearing mineral assemblages were almost completely replaced by anhydrous mineral assemblages through various dehydration melting reactions. A subsequent pressure increase of 2-3 kbar led to the formation of the peak-metamorphic mineral assemblages Grt-Opx and (Grt-)Opx-Cpx in the orthogneisses and Grt-Opx, Grt-Sil and (Grt-)(Spr-)Opx-Sil-Qtz in the paragneisses. UHT-Metamorphism is proved by conventional geothermobarometry (970 +/- 70°C; 9.5 +/- 2.5 kbar), by the very high Al content of peak-metamorphic orthopyroxene (up to 11.9 wt.\% Al2O3) in many paragneisses and by Opx-Sil-Qtz assemblages in the MgAl-rich gneisses. Post-peak decompression is recorded by several corona and symplectite textures, formed at the expense of the peak-metamorphic phases: Initial UHT decompression of about ca. 2 kbar to 940 +/- 60°C at 8 +/- 2 kbar is mainly evident from the formation of sapphirine-bearing symplectites in the Opx-Sil gneisses. Subsequent high-temperature decompression to 6 +/- 2 kbar at 800 +/- 60°C resulted in the formation of Crd-Opx-Spl, Crd-Opx and Spl-Crd symplectites. Subsequent near-isobaric cooling to upper amphibolite conditions of 660 +/- 30°C at 5 +/- 1.5 kbar led to the re-growth of biotite, hornblende, sillimanite and garnet. During continued decompression orthopyroxene and cordierite were formed at the expense of biotite in several paragneisses. In a geodynamic model UHT metamorphism of the Epembe Unit is correlated with the formation of a large magma chamber at the mantle-crust boundary, which forms the source for the anorthosites of the KIC. In contrast, amphibolite facies metamorphism of the Orue Unit is ascribed to a regional contact metamorphic event, caused by the emplacement of the anorthositic crystal mushes in the middle crust.}, subject = {Namibia }, language = {en} } @phdthesis{Hofmann2003, author = {Hofmann, Markus}, title = {Signal transduction during defense response and source-sink transition in tomato}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5421}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Plants have evolved an elaborate system to cope with a variety of biotic and abiotic stresses. Typically, under stress conditions an appropriate defense response is invoked which is accompanied by changes in the metabolic status of the plant. Photosynthesis is downregulated and sucrose is imported into the tissue, which provides a faster and more constant flux of energy and carbon skeletons to perform the defense response. Interestingly, these processes are co-ordinately regulated and the signal transduction chains underlying these cellular programs appear to share at least some common elements. Both the induction of sink metabolism and defense response is dependent on signal transduction pathways involving protein phosphorylation. Furthermore, regulation of extracellular invertase (INV) and phenylalanine ammonia lyase (PAL) which are markers for sink metabolism and defense response is preceded by the transient activation of MAP kinases. In depth analysis of MAP kinase activation by partial purification led to the discovery that, depending on the stimulus, different subsets of MAP kinases are activated. This differential MAPK activation is likely to possess a signal encoding function. In addition, the partial purification of MAP kinases was found to be suitable to address specific cellular functions to individual MAP kinase isoenzymes. By this way, LpWIPK was identified as the major MAP kinase activity induced after stimulation of tomato cells with different elicitors. LpWIPK is thus considered as a key regulator of defense response together with sink induction in tomato. A study using nonmetabolisable sucrose analogs revealed that the regulation of photosynthesis is not directly coupled to this signal transduction pathway since it is independent of MAP kinase activation. Nonetheless, downregulation is induced by the same stimuli that induce the defense response and sink metabolism and it will therefore be interesting to uncover the branch points of this signalling network in the future. MAP kinases are not only central components regulating the response to biotic stresses. In addition to e.g. pathogens, MAP kinases are as well involved in signal transduction events invoked by abiotic stresses like cold and drought. In a recent study, we could show that a MAP kinase is activated by heat stress, under conditions a plant will encounter in nature. This previously unknown MAP kinase is able to specifically recognise the heat stress transcription factor HsfA3 as a substrate, which supports a role of this MAP kinase in the regulation of the heat stress response. Moreover, the observation that HsfA3 is phosphorylated by the heat activated MAP kinase in vitro provides a promising basis to identify HsfA3 as the first physiological substrate of a plant MAP kinase. Intracellular protons have been implicated in the signal transduction of defense related signals. In a study using Chenopodium rubrum cells, we could show that cytosolic changes in pH values do not precede the regulation of the marker genes INV and PAL. Depending on the stimulus applied, cytosolic acidification or alkalinisation can be observed, which excludes a role for protons as signals in this pathway. Together with the concomitant changes of the pH value of the extracellular space, these variations can thus be considered as terminal part of the defense response itself rather than as a second messenger. WRKY transcription factors have only recently been identified as indirect targets of a central plant MAP kinase cascade. In addition, the identification of cognate binding sites in the promoters of INV and PAL supports a role for these proteins in the co-ordinate regulation of defense response and sink induction. A novel elicitor responsive WRKY transcription factor, LpWRKY1, was cloned from tomato and characterised with respect to its posttranslational modification. This immediate early transcription factor is transiently induced upon pathogen attack and the induction is dependent on phosphorylation. Furthermore, it was shown for the first time with respect to WRKY transcription factors, that LpWRKY1 is phosphorylated in vivo. Analysis of the role of this phosphorylation by in gel assays using recombinant WRKY protein as the substrate revealed two protein kinases that are transiently activated during the defense response to phosphorylate LpWRKY1. This data demonstrates that WRKY proteins require phosphorylation to modulate their DNA binding or transactivating activity.}, language = {en} } @phdthesis{Schwaerzel2003, author = {Schw{\"a}rzel, Martin}, title = {Localizing engrams of olfactory memories in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5065}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Zars and co-workers were able to localize an engram of aversive olfactory memory to the mushroom bodies of Drosophila (Zars et al., 2000). In this thesis, I followed up on this finding in two ways. Inspired by Zars et al. (2000), I first focused on the whether it would also be possible to localize memory extinction.While memory extinction is well established behaviorally, little is known about the underlying circuitry and molecular mechanisms. In extension to the findings by Zars et al (2000), I show that aversive olfactory memories remain localized to a subset of mushroom body Kenyon cells for up to 3 hours. Extinction localizes to the same set of Kenyon cells. This common localization suggests a model in which unreinforced presentations of a previously learned odorant intracellularly antagonizes the signaling cascades underlying memory formation. The second part also targets memory localization, but addresses appetitive memory. I show that memories for the same olfactory cue can be established through either sugar or electric shock reinforcement. Importantly, these memories localize to the same set of neurons within the mushroom body. Thus, the question becomes apparent how the same signal can be associated with different events. It is shown that two different monoamines are specificaly necessary for formation of either of these memories, dopamine in case of electric shock and octopamine in case of sugar memory, respectively. Taking the representation of the olfactory cue within the mushroom bodies into account, the data suggest that the two memory traces are located in the same Kenyon cells, but in separate subcellular domains, one modulated by dopamine, the other by octopamine. Taken together, this study takes two further steps in the search for the engram. (1) The result that in Drosophila olfactory learning several memories are organized within the same set of Kenyon cells is in contrast to the pessimism expressed by Lashley that is might not be possible to localize an engram. (2) Beyond localization, a possibible mechanism how several engrams about the same stimulus can be localized within the same neurons might be suggested by the models of subcellular organisation, as postulated in case of appetitive and aversive memory on the one hand and acquisition and extinction of aversive memory on the other hand.}, subject = {Taufliege}, language = {en} } @phdthesis{Schulz2003, author = {Schulz, Heidi}, title = {Towards a comprehensive description of the human retinal transcriptome: identification and characterization of differentially expressed genes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7278}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {The human retina is a multilayered neuroectodermal tissue specialized in the transformation of light energy into electric impulses which can be transmitted to the brain where they are perceived as vision. Since the retina is easily accessible and functional aspects are directly recordable, the study of this tissue has been at the forefront of neuroscience research for over a century. Studies have revealed that the distinct functions of the retina require a large degree of differentiation which is achieved by the coordinated function of approximately 55 different cell types. The highly structured anatomy and the functional differentiation of the retina is a result of its distinctive transcriptome and proteome. Due to the complexity of the retina it has been difficult to estimate the number of genes actively transcribed in this tissue. Great efforts in the elucidation of retinal disease genes have led to the identification of 139 retina disease loci with 90 of the corresponding genes cloned thus far . In contrast to the success in the hereditary disorders, efforts to identify the genetic factors conferring manifestations known as age-related macular degeneration (AMD) have revealed sparse results. AMD is a retinal disease affecting a significant percentage of the older population. This disorder is likely due to exogenic as well as genetic factors. To further our understanding of retinal physiology and facilitate the identification of genes underlying retinal degenerations, particularly AMD, our efforts concentrated on the systematic analysis of the retinal transcriptome. Since approximately half of all retinal degeneration-associated genes identified to date are preferentially expressed in retina, it is plausible that the investigation of gene expression profiles and the identification of retina-expressed transcripts could be an important starting point for characterizing candidate genes for the retinal diseases. The expressed sequence tags approach included the assessment of all retinal expressed sequence tags (EST) clusters indexed in the UniGene database and of 1080 single-pass ESTs derived from an in-house generated human retina suppression subtracted hybridization (SSH) cDNA library. In total, 6603 EST clusters were evaluated during this thesis and detailed in-silico analysis was performed on 750 EST clusters. The expression of the genes was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR), followed by confirmation using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), as well as conventional and virtual Northern blot analysis. The expression profiling of 337 selected EST clusters led to the identification of 111 transcripts, of which 60 are specific or abundant to the retina, 3 are expressed at high levels in the retinal pigment epithelium (RPE), and 48 are expressed in brain as well as in retina. The EST approach used to select candidate transcripts allowed us to assess the effectiveness of the two available resources, the UniGene database and the retinal SSH (retSSH) cDNA library. From the results obtained, it is evident that the generation of suppression subtracted libraries to identify cell-specific transcripts constitutes the most straight-forward and efficient strategy. In addition to the high percentage of candidate genes that are identified from an SSH cDNA library, it has the added benefit that genes expressed at low levels can be identified. Furthermore, comparison of our retina-enriched gene set with previously published studies demonstrated only limited overlap of the identified genes further confirming the valuable source of retinal genes from our retinal SSH cDNA library. The effort of our and other groups has resulted in the establishment of the full-length coding sequence of 55 of the 111 genes uniquely or preferentially expressed in the retina. Using various methods such as bioinformatical analysis, EST assembly, cDNA library screening, and rapid amplification of cDNA ends (RACE) a number of genes were cloned in the scope of this thesis including C1orf32, C4orf11, C7orf9, C12orf7, C14orf29, DAPL1, and GRM7. Bioinformatic analyses and cDNA library screening were used to isolate the full-length cDNA sequence and determine the genomic organization of C7orf9, also identified as RFRP. This 1190 bp retina-specific transcript from chromosome 7p15.3 encodes a precursor protein for at least two small neuropeptides, referred to as RFRP-1 and RFRP-3. Since C7orf9 is localized in the critical region for dominant cystoid macular dystrophy (CYMD) its role in the pathology was investigated. Southern blot analysis and sequencing of samples from two affected individuals of the original pedigree used to localize the disease gene excluded the gene from involvement in this disease. Multiple isoforms of the C12orf7 gene were assembled from a number of clones identified from library screenings, PCR amplifications, and RACE experiments. The gene variants, transcribed from chromosome 12q13.13, have been found to be expressed exclusively in retina. Because of the multiple alternative splicing of the gene, we can only speculate about the nature of the protein it encodes. The longest transcript, which includes all six exons plus the last intervening sequence, encodes a 471 aa protein which contains a nuclear localization signal and five ankyrin repeats. The existence of many isoforms is also observed in mouse suggesting that they may have a relevant role in cellular physiology. Five novel splice variants of the glutamate metabotropic receptor 7 (GRM7) resulting from the use of alternative 3'-end exons were identified and characterized. One of the novel variants, GRM7_v3, encodes a 924 aa protein and is therefore the longest putative GRM7 protein reported to date. Even though they are not retina-specific, the isoforms are preferentially expressed in the nervous system. Although the functional properties of the specific carboxyl-termini are still unclear, it is known that axon targeting of GRM7_v1 is mediated by the last 60 aa of the protein. Hence the novel isoforms may direct the protein to specific subcellular localizations. The C1orf32 gene, preferentially expressed in retina, is organized in 10 exons and is transcribed from chromosome 1q24.1. Bioinformatic analyses of the 639 aa putative protein not only identified the mouse and rat orthologous genes but also the LISCH7 gene as a potential member of the same family. Since the LISCH7 protein has been shown to function as a low density lipoprotein receptor, the C1orf32 protein may be involved in retinal lipid homeostasis. Disturbances in lipid metabolism have been proposed as one of the pathways involved in AMD etiology. Thus, the role of C1orf32 in this complex disease should be investigated. Expression analyses of the death-associated protein-like 1 (DAPL1) gene revealed that it is expressed in both the retina and the RPE at high levels. The 552 bp transcript encodes a 107 aa putative protein and is transcribed from chromosome 2q24.1. In-silico analyses identified an additional 12 related proteins from various species which share high similarity constituting a novel protein family. The similarity to the death-associated-protein (DAP) is particularly interesting since this protein has been found to be indispensable for programmed cell death. Therefore, DAPL1 is an excellent candidate for retinal disease as apoptosis is generally the ultimate cause in retinal degeneration. The retina-specific C4orf11 and C14orf29 genes localized on chromosome 4q21.22 and 14q22.1, respectively, are both transcribed in more than one isoform. The encoded proteins do not contain any known domains but because of their retina-specific expression they may be important for proper retinal physiology. As part of the long-term goals of the project, several of the cloned genes are being genotyped to construct single nucleotide polymorphism (SNP) maps. Projects to investigate haplotype frequencies of candidate genes in large cohorts of controls and AMD patients are ongoing. Thus, by establishing a collection of 111 genes expressed exclusively or preferentially in the retina, the present work has laid the foundation for future research in retinal diseases.}, subject = {Netzhaut}, language = {en} } @phdthesis{Nedvetsky2003, author = {Nedvetsky, Pavel I.}, title = {Regulation of the nitric oxide receptor, soluble guanylyl cyclase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7046}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Soluble guanylyl cyclase (sGC) is the best established receptor for nitric oxide (NO) and regulates a great number of important physiological functions. Surprisingly, despite the wellappreciated roles of this enzyme in regulation of vascular tone, smooth muscle cell proliferation, platelet aggregation, renal sodium secretion, synaptic plasticity, and other functions, extremely little is known about the regulation of sGC activity and protein levels. To date, the only well-proven physiologically relevant sGC regulator is NO. In the present study, some additional possibilities for sGC regulation were shown. Firstly, we evaluated the ability of different NO donors to stimulate sGC. Significant differences in the sGC stimulation by SNP and DEA/NO were found. DEA/NO stimulated sGC much stronger than did SNP. Interestingly, no correlation between the sGC protein and maximal activity distribution was found in rat brain regions tested, suggesting the existence of some additional regulatory mechanisms for sGC. The failure of SNP to stimulate sGC maximally might be one of the reasons why the lack of correlation between the distribution of sGC activity and proteins in brain was not detected earlier. Prolonged exposure of endothelial cells to NO donors produced desensitization of the cGMP response. This desensitization cannot be explained by increased PDE activity, since PDE inhibitors were not able to prevent the NO donor-induced decrease of the maximal cGMP response in endothelial cells. The failure of SH-reducing agents to improve the cGMP response after its desensitization by NO suggests that a SH-independent mechanism mediates NO effects. Demonstration that the potency of the recently described activator of oxidized (heme-free) sGC, BAY58-2667, to stimulate sGC increases after prolonged exposure of the cells to an NO donor, DETA/NO, suggests that oxidation of heme may be a reason for NOinduced desensitization of sGC and decrease in sGC protein level. Indeed, the well-known heme-oxidizing agent ODQ produces a dramatic decrease in sGC protein levels in endothelial cells and BAY58-2667 prevents this effect. Although the mechanism of sGC activation and stabilization by BAY58-2667 is unknown, this substance is an interesting candidate to modulate sGC under conditions where sGC heme iron is oxidized. Very little is known about regulation of sGC by intracellular localization or translocation between different intracellular compartments. In the present study, an increase in sGC sensitivity to NO under membrane association was demonstrated. Treatment of isolated lung with VEGF markedly increased sGC in membrane fractions of endothelial cells. Failure of VEGF to stimulate sGC membrane association in cultured endothelial cells allows us to propose a complex mechanism of regulation of sGC membrane association and/or a transient character of sGC membrane attachment. A very likely mechanism for the attachment of sGC to membranes is via sGCinteracting proteins. These proteins may participate also in other aspects of sGC regulation. The role of the recently described sGC interaction partner, Hsp90, was investigated. Shortterm treatment of endothelial cells with an Hsp90 inhibitor does not affect NO donor or calcium ionophore-stimulated cGMP accumulation in the cells. However, inhibition of Hsp90 results in a rapid and dramatic decrease in sGC protein levels in endothelial cells. These effects were unrelated to changes in sGC transcription, since inhibition of transcription had much slower effect on sGC protein levels. In contrast, inhibitors of proteasomes abolished the reduction in sGC protein levels produced by an Hsp90 inhibitor, suggesting involvement of proteolytic degradation of sGC proteins during inhibition of Hsp90. All these data together suggest that Hsp90 is required to maintain mature sGC proteins. In conclusion, in the present study it was demonstrated that multiple mechanisms are involved in the regulation of sGC activity and its sensitivity to NO. Oxidation of sGC heme by NO seems to be one of the mechanisms for negative regulation of sGC in the presence of high or prolonged stimulation with NO. Another possible means of regulating sGC sensitivity to NO is via the intracellular translocation of the enzyme. It has been also demonstrated here that attachment of sGC to the membrane fraction results in an apparent increase in the enzyme sensitivity to NO. Additionally, Hsp90 was required to maintain sGC protein in endothelial and other cell types. However, we could not find any acute affect of Hsp90 on sGC activity, as reported recently. All these findings demonstrate that the regulation of sGC activity and protein level is a much more complex process than had been assumed earlier.}, subject = {Guanylatcyclase}, language = {en} } @phdthesis{AbdelRahman2003, author = {Abdel Rahman, Faisal Mirghani}, title = {Systematic analysis of genes expressed in the retinal pigment epithelium (RPE) and identification of candidates for genetic susceptibility to age-related macular degeneration (AMD)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7053}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Age related macular degeneration (AMD) is the leading cause of visual impairment in the elderly and the major cause of blindness in the developed world. To date, the molecular mechanisms underlying the disease are not well understood although in recent years a primary involvement of the retinal pigment epithelium (RPE) has become evident. The aim of the present study is to systematically analyse genes which are differentially expressed in the RPE, and to assess their possible association with mechanisms and pathways likely to be related to retinal disease, in particular AMD. Towards this goal, 2379 expressed sequence tags (ESTs) were established from an inhouse generated RPE cDNA library. This library was constructed by using the suppression subtraction hybridization (SSH) technique which normalises redundant sequences and ensures enrichment of rare transcripts. In a first phase, 1002 ESTs were sequenced and subjected to comprehensive alignment with public nucleotide and protein databases. A search of the 1002 ESTs against the human genome draft sequence yielded 168 known genes, 51 predicted genes, 15 unknown transcripts and 41 clones with no significant similarity. Reverse Northern blot hybridization was performed for 318 EST clusters to identify abundantly expressed genes in the RPE and to prioritize subsequent analyses. Representative clones were spotted onto a nylon membrane and hybridized with cDNA probes of driver (heart and liver) and tester (RPE) used in the cDNA library construction. Subsequently, 107 EST clusters were subjected to Northern blot hybridizations. These analyses identified 7 RPE-specific, 3 retina-specific, 7 RPE/retina-specific, and 7 tissue restricted transcripts, while 29 EST clusters were ubiquitously expressed, and evaluation was not possible for another 54 EST clusters. Of the 24 transcripts with specific or restricted expression, 16 clones were selected for further characterization. The predicted gene MGC2477 and 2 novel isoforms of the human transient receptor potential cation channel, subfamily M, member 3 (TRPM3) were cloned and further described in detail. In addition, polymorphic variations for these 2 genes as well as for the human MT-Protocadherin gene were determined. For MGC2477, 15 single nucleotide polymorphisms (SNPs) were identified, with 13 having a frequency of the minor allele greater than 20\%. 10 of the 15 SNPs have not been reported in so far in public SNP repertoires. Partial assessment of the TRPM3 gene yielded 35 SNPs. Of these, 30 (85.7\%) were highly frequent (0.17-0.5\%), and 14 (40\%) were novel. The MT-Protocadherin gene revealed 35 SNPs, including 28 (80\%) with high frequency of the minor allele. 23 (65.7\%) were novel SNPs. These SNPs will be used to construct the most common haplotypes. These will be used in case/control association studies in 400 AMD patients and 200 ethnically and aged matched controls to assess a possible contribution of these genes in the etiology of AMD.}, subject = {Senile Makuladegeneration / Pigmentepithel / Genexpression}, language = {en} } @phdthesis{Drueppel2003, author = {Dr{\"u}ppel, Kirsten}, title = {Petrogenesis of the Mesoproterozoic anorthosite, syenite and carbonatite suites of NW Namibia and their contribution to the metasomatic formation of the Swartbooisdrif sodalite deposits}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {During the Mesoproterozoic large volumes of magma were repeatedly emplaced within the basement of NW Namibia. Magmatic activity started with the intrusion of the anorthositic rocks of the Kunene Intrusive Complex (KIC) at 1,385-1,347 Ma. At its south-eastern margin the KIC was invaded by syenite dykes (1,380-1,340 Ma) and younger carbonatites (1,140-1,120 Ma) along ENE and SE trending faults. Older ferrocarbonatite intrusions, the 'carbonatitic breccia', frequently contain wallrock fragments, whereas subordinate ferrocarbonatite veins are almost xenolith-free. Metasomatic interaction between carbonatite-derived fluids and the neighbouring and incorporated anorthosites led to the formation of economically important sodalite deposits. Investigated anorthosite samples display the magmatic mineral assemblage of Pl (An37-75) ± Ol ± Opx ± Cpx + Ilm + Mag + Ap ± Zrn. Ilmenite and pyroxene are surrounded by narrow reaction rims of biotite and pargasite. During the subsolidus stage sporadic coronitic garnet-orthopyroxene-quartz assemblages were produced. Thermobarometry studies on amphiboles yield temperatures of 985-950°C whereas the chemical composition of coronitic garnet and orthopyroxene indicate a subsolidus re-equilibration of the KIC at conditions of 760 ± 100°C and 7.3 ± 1 kbar. In the syenites Kfs, Pl, Hbl and/or Cpx crystallized first, followed by a second generation of Kfs, Hbl, Fe-Ti oxides and Ttn. Crystallization of potassium feldspar occurred under temperatures of 890-790°C. For the crystallization of hastingsite pressures of 6.5 ± 0.6 kbar are obtained. In order to constrain the source rocks of the two suites, oxygen isotope analyses of feldspar as well as geochemical bulk rock analyses were carried out. In case of the anorthosites, the general geochemical characteristics are in excellent agreement with their derivation from fractionated basaltic liquids, with the d18O values (5.88 ± 0.19 per mille) proving their derivation from mantle-derived magmas. The results obtained for the felsic suite, provide evidence against consanguinity of the anorthosites and the syenites, i.e. (1) compositional gaps between the geochemical data of the two suites, (2) trace element data of the felsic suite points to a mixed crustal-mantle source, (3) syenites do not exhibit ubiquitous negative Eu-anomalies in their REE patterns, which would be expected from fractionation products of melts that previously formed plagioclase cumulates and (4) feldspar d18O values from the syenites fall in a range of 7.20-7.92 per mille, which, however, is about 1.6 per mille higher than the average d18O of the anorthosites. Conformably, the crustal-derived felsic and the mantle-derived anorthositic suite are suggested to be coeval but not consanguineous. Their spatial and temporal association can be accounted for, if the heat necessary for crustal melting is provided by the upwelling and emplacement of mantle-derived melts, parental to the anorthosites. In order to constrain the source of the 1,140-1,120 Ma carbonatites and to elucidate the fenitizing processes, which led to the formation of the sodalite, detailed mineralogical and geochemical investigations, stable isotope (C,O,S) analyses and fluid inclusion measurements (microthermometrical studies and synchrotron-micro-XRF analyses) have been combined. There is striking evidence that carbonatites of both generations are magmatic in origin. They occur as dykes with cross-cutting relationships and margins disturbed by fenitic aureoles, and contain abundant flow-oriented xenoliths. The mineral assemblage of both carbonatite generations of Ank + Cal + Ilm + Mag + Bt ± Ap ± pyrochlore ± sulphides in the main carbonatite body and Ank + Cal + Mag ± pyrochlore ± rutile in the ferrocarbonatite veins, their geochemical characteristics and the O and C isotope values of ankerite (8.91 to 9.73 and -6.73 to -6.98, respectively) again indicate igneous derivation, with the 18O values suggesting minor subsolidus alteration. NaCl-rich fluids, released from the carbonatite melt mainly caused the fenitization of both, the incorporated and the bordering anorthosite. This process is characterized by the progressive transformation of Ca-rich plagioclase into albite and sodalite. Applying conventional geothermobarometry combined with fluid-inclusion isochore data, it was possible to reconstruct the P-T conditions for the carbonatite emplacement and crystallization (1200-630°C, 4-5 kbar) and for several mineral-forming processes during metasomatism (e.g. formation of sodalite: 800-530°C). The composition and evolutionary trends of the fenitizing solution were estimated from both the sequence of metasomatic reactions within wallrock xenoliths in the carbonatitic breccia and fluid inclusion data. The fenitizing solutions responsible for the transformation of albite into sodalite can be characterised as of NaCl-rich aqueous brines (19-30 wt.\% NaCl eq.), that contained only minor amounts of Sr, Ba, Fe, Nb, and LREE.}, subject = {Namibia }, language = {en} } @phdthesis{Roth2003, author = {Roth, Martin}, title = {Functional and developmental characterisation of matrix binding sites in decapentaplegic}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7542}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In the last years it became evident that many cytokines do not only bind to their specific cell surface receptors but also interact with components of the extracellular matrix. Mainly in Drosophila, several enzymes were identified, that are involved in glycosaminoglycan synthesis. Mutations in these enzymes mostly result in disturbances of several signaling pathways like hedgehog, wingless, FGF or dpp. In most cases it was, due to these pleiotropic effects, not possible to examine the relevance of matrix interactions for single pathways. The aim of this work was to examine the relevance of matrix interactions for the TGF-ß superfamily member DPP. Based on the fact that DPP is highly homologous to human BMP-2, the basic N-terminus of mature DPP was mutated, which has been shown to contain a heparin-binding site in BMP-2. Thus, a wildtype variant (D-MYC), a deletion variant (D-DEL), which lacked the whole basic part of the N-terminus and a duplication variant (D-DUP), which contained a second copy of the basic core moitiv, were generated. In order to characterise the variants biochemically, they were expressed in E.coli and refolded in a bioactive form. In chicken limbbud assay, the deletion variant was much more active than the wildtype variant, comparable to data of BMP-2. By means of biacore mesurements with the immobilised ectodomain of the high affinity type I receptor thick veins, it could be demonstrated, that the variants differ only in matrix binding and not in their receptor affinity. Different matrix binding was shown by Heparin FPLC. The biological relevance of the matrix interaction of DPP was examined in transgenic flies. To allow expression of the different variants under the control of various Gal4 driver lines, they were cloned behind an UAS-promoter site. In early tracheal development, a strong dependence of DPP signaling on matrix binding was observed. While ectopic expression of the deletion variant caused only minor defects, the branching pattern was strongly disturbed by overexpression of wildtype and duplication variant. Ubiquitous expression of the variants in the wing imaginal disc caused overproliferation of the disc and expansion of the omb target gene expression. The extent of phenotypes correlated with the matrix binding ability of the variants. Corresponding disturbances of the wing vein pattern was observed in adult flies. By the crossing of different dpp allels, transheterozygous animals were created, that lack dpp only in imaginal discs. Expression of the variants under the control of a suitable dpp-Gal4 driver line revealed insights into the biological relevance of matrix binding on DPP gradient formation and specific target gene activation in wing imaginal discs. It was shown, that all variants were able to generate a functional DPP gradient with correct expression of the target genes omb and spalt. Again a correlation between extent of target gene domains and matrix binding ability of the corresponding variants was found. Thus by mutating the N-terminus of DPP, it could be shown that this is responsible for DPP`s matrix interaction. Also the relevance of matrix binding of DPP in different tissues was examined. It turned out, that the reorganisation of tracheal branching by DPP strongly depends on matrix interactions wheras the establishing of a gradient in wing imaginal discs depends only gradually on matrix interactions. Based on these data a model for the action of DPP/TGFßs as morphogens was established. While a deletion of matrix binding leads to a decrease in specific bioactivity of the cytokine, the latter is increased by additional matrix binding sites.}, subject = {Taufliege}, language = {en} } @phdthesis{Attia2003, author = {Attia, Mohamad Ibrahim}, title = {Design, synthesis and pharmacological evaluation of certain GABAB agonists}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7551}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Ziel dieser Arbeit war die Synthese von (RS)-5-Amino-3-aryl(methyl)-pentans{\"a}ure Hydrochloride, 3-Aminomethyl-5-chlor-benzols{\"a}ure Hydrochlorid und(RS)-4-Amino-3-(4´-ethynyl(jod)-phenyl)-butans{\"a}ure Hydrochloride und die Testung der pharmakologischen Aktivit{\"a}t dieser Verbindungen. Die synthetisierten Verbindungen wurden als GABAB-Rezeptor Agonisten, in einem auf Ca2+-Messungen basierenden Funktional-Assay (in vitro tsA Zellen mit GABAB1b/GABAB2/G\&\#945;q-z5 transfektiert), getestet und daraus ein Struktur-Aktivit{\"a}ts Modell abgeleitet. Im allgemein Teil dieser Arbeit wird ein {\"U}berblick, {\"u}ber die Neurotransmitter- Rezeptoren (Liganden gesteuerte Ionen-Kanal-Rezeptoren und G Protein-gekoppelte Rezeptoren) des zentralen Nervensystems und deren Agonisten und Antagonisten, gegeben. Eine ausf{\"u}hrliche Diskussion zur Synthesestrategie der Verbindungen der Zwischenstufen und der Ausgangsmaterialien wird in den Schemata 2-6 beschrieben. Die synthetisierten Verbindungen wurden als GABAB Agonisten gepr{\"u}ft. Zus{\"a}tzlich wurden diese im 3D Homologie Modell mit FlexiDock Programm gedockt. Daraus wurde ein Modell zur Voraussage der Aktivit{\"a}t von Analogen und Homologen des Baclofens abgeleitet. Letztendlich wurde ein Pharmakophor-Modell f{\"u}r GABAB Agonisten mit DISCO (DIStance COmparisons) Programm erstellt.}, subject = {Baclofen}, language = {en} }