@phdthesis{Reis2022, author = {Reis, Felix}, title = {Realization and Spectroscopy of the Quantum Spin Hall Insulator Bismuthene on Silicon Carbide}, doi = {10.25972/OPUS-25825}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258250}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Topological matter is one of the most vibrant research fields of contemporary solid state physics since the theoretical prediction of the quantum spin Hall effect in graphene in 2005. Quantum spin Hall insulators possess a vanishing bulk conductivity but symmetry-protected, helical edge states that give rise to dissipationless charge transport. The experimental verification of this exotic state of matter in 2007 lead to a boost of research activity in this field, inspired by possible ground-breaking future applications. However, the use of the quantum spin Hall materials available to date is limited to cryogenic temperatures owing to their comparably small bulk band gaps. In this thesis, we follow a novel approach to realize a quantum spin Hall material with a large energy gap and epitaxially grow bismuthene, i.e., Bi atoms adopting a honeycomb lattice, in a \((\sqrt{3}\times\sqrt{3})\) reconstruction on the semiconductor SiC(0001). In this way, we profit both from the honeycomb symmetry as well as the large spin-orbit coupling of Bi, which, in combination, give rise to a topologically non-trivial band gap on the order of one electronvolt. An in-depth theoretical analysis demonstrates that the covalent bond between the Si and Bi atoms is not only stabilizing the Bi film but is pivotal to attain the quantum spin Hall phase. The preparation of high-quality, unreconstructed SiC(0001) substrates sets the basis for the formation of bismuthene and requires an extensive procedure in ultra-pure dry H\(_2\) gas. Scanning tunneling microscopy measurements unveil the (\(1\times1\)) surface periodicity and smooth terrace planes, which are suitable for the growth of single Bi layers by means of molecular beam epitaxy. The chemical configuration of the resulting Bi film and its oxidation upon exposure to ambient atmosphere are inspected with X-ray photoelectron spectroscopy. Angle-resolved photoelectron spectroscopy reveals the excellent agreement of probed and calculated band structure. In particular, it evidences a characteristic Rashba-splitting of the valence bands at the K point. Scanning tunneling spectroscopy probes signatures of this splitting, as well, and allows to determine the full band gap with a magnitude of \(E_\text{gap}\approx0.8\,\text{eV}\). Constant-current images and local-density-of-state maps confirm the presence of a planar honeycomb lattice, which forms several domains due to different, yet equivalent, nucleation sites of the (\(\sqrt{3}\times\sqrt{3}\))-Bi reconstruction. Differential conductivity measurements demonstrate that bismuthene edge states evolve at atomic steps of the SiC substrate. The probed, metallic local density of states is in agreement with the density of states expected from the edge state's energy dispersion found in density functional theory calculations - besides a pronounced dip at the Fermi level. By means of temperature- and energy-dependent tunneling spectroscopy it is shown that the spectral properties of this suppressed density of states are successfully captured in the framework of the Tomonaga-Luttinger liquid theory and most likely originate from enhanced electronic correlations in the edge channel.}, subject = {Zweidimensionales Material}, language = {en} } @phdthesis{Schmitt2022, author = {Schmitt, Matthias}, title = {High Energy Spin- and Momentum-Resolved Photoelectron Spectroscopy of Complex Oxides}, doi = {10.25972/OPUS-26475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Spin- and \(k\)-resolved hard X-ray photoelectron spectroscopy (HAXPES) is a powerful tool to probe bulk electronic properties of complex metal oxides. Due to the low efficiency of common spin detectors of about \(10^{-4}\), such experiments have been rarely performed within the hard X-ray regime since the notoriously low photoionization cross sections further lower the performance tremendously. This thesis is about a new type of spin detector, which employs an imaging spin-filter with multichannel electron recording. This increases the efficiency by a factor of \(10^4\) and makes spin- and \(k\)-resolved photoemission at high excitation energies possible. Two different technical approaches were pursued in this thesis: One using a hemispherical deflection analyzer (HDA) and a separate external spin detector chamber, the other one resorting to a momentum- or \(k\)-space microscope with time-of-flight (TOF) energy recording and an integrated spin-filter crystal. The latter exhibits significantly higher count rates and - since it was designed for this purpose from scratch - the integrated spin-filter option found out to be more viable than the subsequent upgrade of an existing setup with an HDA. This instrumental development is followed by the investigation of the complex metal oxides (CMOs) KTaO\(_3\) by angle-resolved HAXPES (HARPES) and Fe\(_3\)O\(_4\) by spin-resolved HAXPES (spin-HAXPES), respectively. KTaO\(_3\) (KTO) is a band insulator with a valence-electron configuration of Ta 5\(d^0\). By angle- and spin-integrated HAXPES it is shown that at the buried interface of LaAlO\(_3\)/KTO - by the generation of oxygen vacancies and hence effective electron doping - a conducting electron system forms in KTO. Further investigations using the momentum-resolution of the \(k\)-space TOF microscope show that these states are confined to the surface in KTO and intensity is only obtained from the center or the Gamma-point of each Brillouin zone (BZ). These BZs are furthermore square-like arranged reflecting the three-dimensional cubic crystal structure of KTO. However, from a comparison to calculations it is found that the band structure deviates from that of electron-doped bulk KTaO\(_3\) due to the confinement to the interface. There is broad consensus that Fe\(_3\)O\(_4\) is a promising material for spintronics applications due to its high degree of spin polarization at the Fermi level. However, previous attempts to measure the spin polarization by spin-resolved photoemission spectroscopy have been hampered by the use of low photon energies resulting in high surface sensitivity. The surfaces of magnetite, though, tend to reconstruct due to their polar nature, and thus their magnetic and electronic properties may strongly deviate from each other and from the bulk, dependent on their orientation and specific preparation. In this work, the intrinsic bulk spin polarization of magnetite at the Fermi level (\(E_F\)) by spin-resolved photoelectron spectroscopy, is determined by spin-HAXPES on (111)-oriented thin films, epitaxially grown on ZnO(0001) to be \(P(E_F) = -80^{+10}_{-20}\) \%.}, subject = {Elektronenkorrelation}, language = {en} } @phdthesis{Mahler2022, author = {Mahler, David}, title = {Surface states in the topological material HgTe}, doi = {10.25972/OPUS-25398}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-253982}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The motivation for this work has been contributing a step to the advancement of technology. A next leap in technology would be the realization of a scalable quantum computer. One potential route is via topological quantum computing. A profound understanding of topological materials is thus essential. My work contributes by the investigation of the exemplary topological material HgTe. The focus lies on the understanding of the topological surface states (TSS) and new possibilities to manipulate them appropriately. Traditionally top gate electrodes are used to adjust the carrier density in such semi-conductor materials. We found that the electric field of the top gate can further alter the properties of the HgTe layer. The formation of additional massive Volkov-Pankratov states limits the accessibility of the TSS. The understanding of these states and their interplay with the TSS is necessary to appropriately design devices and to ensure their desired properties. Similarly, I observed the existence and stability of TSSs even without a bandgap in the bulk band structure in the inversion induced Dirac semi-metal phase of compressively strained HgTe. The finding of topological surface states in inversion-induced Dirac semi-metals provides a consistent and simple explanation for the observation reported for \(\text{Cd}_3\text{As}_2\). These observations have only been possible due to the high quality of the MBE grown HgTe layers and the access of different phases of HgTe via strain engineering. As a starting point I performed Magneto-transport measurements on 67 nm thick tensilely strained HgTe layers grown on a CdTe substrate. We observed multiple transport channels in this three-dimensional topological insulator and successfully identified them. Not only do the expected topological surface states exist, but also additional massive surface states have been observed. These additional massive surface states are formed due to the electrical field applied at the top gate, which is routinely used to vary the carrier density in the HgTe layer. The additional massive surface states are called Volkov-Pankratov states after B. A. Volkov and O. A. Pankratov. They predicted the existence of similar massive surface states at the interface of materials with mutually inverted bands. We first found indications for such massive Volkov-Pankratov states in high-frequency compressibility measurements for very high electron densities in a fruitful collaboration with LPA in Paris. Magneto-transport measurements and \(k \cdot p\) calculations revealed that such Volkov-Pankratov states are also responsible for the observed whole transport. We also found indications for similar massive VPS in the electron regime, which coexist with the topological surface states. The topological surface states exist over the full investigated gate range including a regime of pure topological insulator transport. To increase the variability of the topological surface states we introduced a modulation doping layer in the buffer layer. This modulation doping layer also enabled us to separate and identify the top and bottom topological surface states. We used the variability of the bulk band structure of HgTe with strain to engineer the band structure of choice using virtual substrates. The virtual substrates enable us to grow compressively strained HgTe layers that do not possess a bandgap, but instead linear crossing points. These layers are predicted to beDirac semi-metals. Indeed I observed also topological surface states and massive Volkov-Pankratov states in the compressively strained Dirac semi-metal phase. The observation of topological surfaces states also in the Dirac semi-metal phase has two consequences: First, it highlights that no bulk bandgap is necessary to observe topological surface states. Second, the observation of TSS also in the Dirac semi-metal phase emphasizes the importance of the underlying band inversion in this phase. I could not find any clear signatures of the predicted disjoint topological surface states, which are typically called Fermi-arcs. The presence of topological surface states and massive Volkov-Pankratov states offer a simple explanation for the observed quantum Hall effect and other two-dimensional transport phenomena in the class of inversion induced Dirac semi-metals, as \(\text{Cd}_3\text{As}_2\). This emphasizes the importance of the inherent bulk band inversion of different topological materials and provides a consistent and elegant explanation for the observed phenomena in these materials. Additionally, it offers a route to design further experiments, devices, and thus the foundation for the induction of superconductivity and thus topological quantum computing. Another possible path towards quantum computing has been proposed based on the chiral anomaly. The chiral anomaly is an apparent transport anomaly that manifests itself as an additional magnetic field-driven current in three-dimensional topological semimetals with a linear crossing point in their bulk band structure. I observed the chiral anomaly in compressively strained HgTe samples and performed multiple control experiments to identify the observed reduction of the magnetoresistance with the chiral anomaly. First, the dependence of the so-called negative magnetoresistance on the angle and strength of the magnetic field has been shown to fit the expectation for the chiral anomaly. Second, extrinsic effects as scattering could be excluded as a source for the observed negative MR using samples with different mobilities and thus impurity concentrations. Third, the necessity of the linear crossing point has been shown by shifting the electrochemical potential away from the linear crossing points, which diminished the negative magnetoresistance. Fourth, I could not observe a negative magnetoresistance in the three-dimensional topological insulator phase of HgTe. These observations together prove the existence of the chiral anomaly and verify compressively strained HgTe as Dirac semi-metal. Surprisingly, the chiral anomaly is also present in unstrained HgTe samples, which constitute a semi-metal with a quadratic band touching point. This observation reveals the relevance of the Zeeman effect for the chiral anomaly due to the lifting of the spin-degeneracy in these samples. Additionally to the chiral anomaly, the Dirac semi-metal phase of compressively strained HgTe showed other interesting effects. For low magnetic fields, a strong weak-antilocalization has been observed. Such a strong weak-anti-localization correction in a three-dimensional layer is surprising and interesting. Additionally, non-trivial magnetic field strength and direction dependencies have been observed. These include a strong positive magnetoresistance for high magnetic fields, which could indicate a metal-insulator transition. On a more device-oriented note, the semi-metal phase of unstrained HgTe constitutes the lower limit of the by strain engineering adjustable minimal carrier density of the topological surface states and thus of very high mobility. To sum up, topological surface states have been observed in the three-dimensional topological insulator phase and the Dirac semi-metal phase of HgTe. The existence and accessibility of topological surface states are thus independent of the existence of a bandgap in the bulk band structure. The topological surface states can be accompanied by massive Volkov-Pankratov states. These VPS are created by electric fields, which are routinely applied to adjust the carrier density in semiconductor devices. The theoretical predicted chiral anomaly has been observed in the Dirac semi-metal phase of HgTe. In contrast to theoretical predictions, no indications for the Fermi-arc called disjoint surface states have been observed, but instead the topological and massive Volkov-Pankratov surface states have been found. These states are thus expected for all inversion-induced topological materials.}, subject = {Quecksilbertellurid}, language = {en} } @article{GramAlbertovaSchirmeretal.2022, author = {Gram, Maximilian and Albertova, P. and Schirmer, V. and Blaimer, M. and Gamer, M. and Herrmann, M. J. and Nordbeck, P. and Jakob, P. M.}, title = {Towards robust in vivo quantification of oscillating biomagnetic fields using Rotary Excitation based MRI}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-19275-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300862}, year = {2022}, abstract = {Spin-lock based functional magnetic resonance imaging (fMRI) has the potential for direct spatially-resolved detection of neuronal activity and thus may represent an important step for basic research in neuroscience. In this work, the corresponding fundamental effect of Rotary EXcitation (REX) is investigated both in simulations as well as in phantom and in vivo experiments. An empirical law for predicting optimal spin-lock pulse durations for maximum magnetic field sensitivity was found. Experimental conditions were established that allow robust detection of ultra-weak magnetic field oscillations with simultaneous compensation of static field inhomogeneities. Furthermore, this work presents a novel concept for the emulation of brain activity utilizing the built-in MRI gradient system, which allows REX sequences to be validated in vivo under controlled and reproducible conditions. Via transmission of Rotary EXcitation (tREX), we successfully detected magnetic field oscillations in the lower nano-Tesla range in brain tissue. Moreover, tREX paves the way for the quantification of biomagnetic fields.}, language = {en} } @article{MuellerSpriestersbachMinetal.2022, author = {M{\"u}ller, S. and Spriestersbach, F. and Min, C.-H. and Fornari, C. I. and Reinert, F.}, title = {Molecular beam epitaxy of TmTe thin films on SrF\(_{2}\) (111)}, series = {AIP Advances}, volume = {12}, journal = {AIP Advances}, number = {2}, doi = {10.1063/5.0083276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300876}, year = {2022}, abstract = {The odd parity nature of 4f states characterized by strong spin-orbit coupling and electronic correlations has led to a search for novel topological phases among rare earth compounds, such as Kondo systems, heavy Fermions, and homogeneous mixed-valent materials. Our target system is thulium telluride thin films whose bandgap is expected to be tuned as a function of lattice parameter. We systematically investigate the growth conditions of TmxTey thin films on SrF\(_{2}\) (111) substrates by molecular beam epitaxy. The ratio between Te and Tm supply was precisely tuned, resulting in two different crystalline phases, which were confirmed by x-ray diffraction and x-ray photoemission spectroscopy. By investigating the crystalline quality as a function of the substrate temperature, the optimal growth conditions were identified for the desired Tm1Te1 phase. Additional low energy electron diffraction and reflective high energy electron diffraction measurements confirm the epitaxial growth of TmTe layers. X-ray reflectivity measurements demonstrate that homogeneous samples with sharp interfaces can be obtained for varied thicknesses. Our results provide a reliable guidance to prepare homogeneous high-quality TmTe thin films and thus serve as a basis for further electronic investigations.}, language = {en} } @article{GramGenslerAlbertovaetal.2022, author = {Gram, Maximilian and Gensler, Daniel and Albertova, Petra and Gutjahr, Fabian Tobias and Lau, Kolja and Arias-Loza, Paula-Anahi and Jakob, Peter Michael and Nordbeck, Peter}, title = {Quantification correction for free-breathing myocardial T1ρ mapping in mice using a recursively derived description of a T\(_{1p}\)\(^{*}\) relaxation pathway}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {24}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {1}, doi = {10.1186/s12968-022-00864-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300491}, year = {2022}, abstract = {Background Fast and accurate T1ρ mapping in myocardium is still a major challenge, particularly in small animal models. The complex sequence design owing to electrocardiogram and respiratory gating leads to quantification errors in in vivo experiments, due to variations of the T\(_{1p}\) relaxation pathway. In this study, we present an improved quantification method for T\(_{1p}\) using a newly derived formalism of a T\(_{1p}\)\(^{*}\) relaxation pathway. Methods The new signal equation was derived by solving a recursion problem for spin-lock prepared fast gradient echo readouts. Based on Bloch simulations, we compared quantification errors using the common monoexponential model and our corrected model. The method was validated in phantom experiments and tested in vivo for myocardial T\(_{1p}\) mapping in mice. Here, the impact of the breath dependent spin recovery time T\(_{rec}\) on the quantification results was examined in detail. Results Simulations indicate that a correction is necessary, since systematically underestimated values are measured under in vivo conditions. In the phantom study, the mean quantification error could be reduced from - 7.4\% to - 0.97\%. In vivo, a correlation of uncorrected T\(_{1p}\) with the respiratory cycle was observed. Using the newly derived correction method, this correlation was significantly reduced from r = 0.708 (p < 0.001) to r = 0.204 and the standard deviation of left ventricular T\(_{1p}\) values in different animals was reduced by at least 39\%. Conclusion The suggested quantification formalism enables fast and precise myocardial T\(_{1p}\) quantification for small animals during free breathing and can improve the comparability of study results. Our new technique offers a reasonable tool for assessing myocardial diseases, since pathologies that cause a change in heart or breathing rates do not lead to systematic misinterpretations. Besides, the derived signal equation can be used for sequence optimization or for subsequent correction of prior study results.}, language = {en} } @article{GuggenbergerTorreLudwigetal.2022, author = {Guggenberger, Konstanze Viktoria and Torre, Giulia Dalla and Ludwig, Ute and Vogel, Patrick and Weng, Andreas Max and Vogt, Marius Lothar and Fr{\"o}hlich, Matthias and Schmalzing, Marc and Raithel, Esther and Forman, Christoph and Urbach, Horst and Meckel, Stephan and Bley, Thorsten Alexander}, title = {Vasa vasorum of proximal cerebral arteries after dural crossing - potential imaging confounder in diagnosing intracranial vasculitis in elderly subjects on black-blood MRI}, series = {European Radiology}, volume = {32}, journal = {European Radiology}, number = {2}, issn = {1432-1084}, doi = {10.1007/s00330-021-08181-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266524}, pages = {1276-1284}, year = {2022}, abstract = {Objectives Vessel wall enhancement (VWE) may be commonly seen on MRI images of asymptomatic subjects. This study aimed to characterize the VWE of the proximal internal carotid (ICA) and vertebral arteries (VA) in a non-vasculitic elderly patient cohort. Methods Cranial MRI scans at 3 Tesla were performed in 43 patients (aged ≥ 50 years) with known malignancy for exclusion of cerebral metastases. For vessel wall imaging (VWI), a high-resolution compressed-sensing black-blood 3D T1-weighted fast (turbo) spin echo sequence (T1 CS-SPACE prototype) was applied post gadolinium with an isotropic resolution of 0.55 mm. Bilateral proximal intradural ICA and VA segments were evaluated for presence, morphology, and longitudinal extension of VWE. Results Concentric VWE of the proximal intradural ICA was found in 13 (30\%) patients, and of the proximal intradural VA in 39 (91\%) patients. Mean longitudinal extension of VWE after dural entry was 13 mm in the VA and 2 mm in the ICA. In 14 of 39 patients (36\%) with proximal intradural VWE, morphology of VWE was suggestive of the mere presence of vasa vasorum. In 25 patients (64 \%), morphology indicated atherosclerotic lesions in addition to vasa vasorum. Conclusions Vasa vasorum may account for concentric VWE within the proximal 2 mm of the ICA and 13 mm of the VA after dural entry in elderly subjects. Concentric VWE in these locations should not be confused with large artery vasculitis. Distal to these segments, VWE may be more likely related to pathologic conditions such as vasculitis.}, language = {en} } @phdthesis{Hoecker2022, author = {H{\"o}cker, Julian Harald}, title = {High-quality Organolead Trihalide Perovskite Crystals: Growth, Characterisation, and Photovoltaic Applications}, doi = {10.25972/OPUS-25859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258590}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Overview of the Organolead Trihalide Perovskite Crystal Area Studies of perovskite single crystals with high crystallographic quality is an important technological area of the perovskite research, which enables to estimate their full optoelectronic potential, and thus to boost their future applications [26]. It was therefore essential to grow high-quality single crystals with lowest structural as well as chemical defect densities and with a stoichiometry relevant for their thin-film counterparts [26]. Optoelectronic devices, e.g. solar cells, are highly complex systems in which the properties of the active layer (absorber) are strongly influenced by the adjacent layers, so it is not always easy to define the targeted properties and elaborate the design rules for the active layer. Currently, organolead trihalide perovskite (OLTP) single crystals with the structure ABX3 are one of the most studied crystalline systems. These hybrid crystals are solids composed of an organic cation such as methylammonium (A = MA+) or formamidinium (A = FA+) to form a three-dimensional periodic lattice together with the lead cation (B = Pb2+) and a halogen anion such as chloride, bromide or iodide (X = Cl-, Br- or I-) [23]. Among them are methylammonium lead tribromide (MAPbBr3), methylammonium lead triiodide (MAPbI3), as well as methylammonium lead trichloride (MAPbCl3) [62, 63]. Important representatives with the larger cation FA+ are formamidinium lead tribromide (FAPbBr3) and formamidinium lead triiodide (FAPbI3) [23, 64]. Besides the exchange of cations as well as anions, it was possible to grow crystals containing two halogens to obtain mixed crystals with different proportions of chlorine to bromine and bromine to iodine, as it is shown in Figure 70. By varying the mixing ratio of the halogens, it was therefore possible to vary the colour and thus the absorption properties of the crystals [85], as it can be done with thin polycrystalline perovskite films. In addition, since a few years it is also doable to grow complex crystals that contain several cations as well as anions [26, 80, 81]. These include the perovskites double cation - double halide formamidinium lead triiodide - methylammonium lead tribromide (FAPbI3)0.9(MAPbBr3)0.1 (FAMA) [26, 80] and formamidinium lead triiodide - methylammonium lead tribromide - caesium lead tribromide (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05 (CsFAMA) [81], which have made a significant contribution to increase the power conversion efficiency (PCE) in thin-film photovoltaics [47, 79, 182]. The growth of crystals to this day is performed exclusively from solution [23, 26, 56, 62]. Important preparation methods are the cooling acid-based precursor solution crystallisation [22], the inverse temperature crystallisation (ITC) [62], and the antisolvent vapour-assistant crystallisation (AVC) [137]. In the cooling crystallisation, the precursor salts AX and PbX2 are dissolved in an aqueous halogen-containing acid at high temperatures [56]. Controlled and slow cooling finally results in a supersaturated precursor solution, which leads to spontaneous nucleation of crystal nuclei, followed by subsequent crystal growth. The ITC method is based on the inverse or retrograde solubility of a dissociated perovskite in an organic solvent [23, 64]. With increasing temperature, the solubility of the perovskite decreases and mm-sized crystals can be grown within a few hours [23]. In the AVC method, the precursors are also dissolved in an organic solvent as well [137]. By slow evaporation of a so-called antisolvent [137], the solubility of the perovskite in the now present solvent mixture decreases and it finally precipitates. In addition, there are many other methods with the goal of growing high quality and large crystals in a short period of time [60, 61, 233, 310].}, subject = {Perowskit}, language = {en} } @phdthesis{Strunz2022, author = {Strunz, Jonas}, title = {Quantum point contacts in HgTe quantum wells}, doi = {10.25972/OPUS-27459}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274594}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Quantenpunktkontakte (englisch: quantum point contacts, QPCs) sind eindimensionale Engstellen in einem ansonsten zweidimensionalen Elektronen- oder Lochsystem. Seit der erstmaligen Realisierung in GaAs-basierten zweidimensionalen Elektronengasen sind QPCs sukzessive zu einem Grundbestandteil mesoskopischer Physik geworden und erfahren in einer Vielzahl von Experimenten Anwendung. Jedoch ist es bis zur Anfertigung der vorliegenden Arbeit nicht gelungen, QPCs in der neuen Materialklasse der zweidimensionalen topologischen Isolatoren zu realisieren. In diesen Materialien tritt der sogenannte Quanten-Spin-Hall-Effekt (QSH-Effekt) auf, welcher sich durch die Ausbildung von leitf{\"a}higen, eindimensionalen sowie gleichermaßen spinpolarisierten Zust{\"a}nden an der Bauteilkante auszeichnet, w{\"a}hrend die restlichen Bereiche der Probe isolierend sind. Ein in einem zweidimensionalen topologischen Isolator realisierter QPC kann demgem{\"a}ß daf{\"u}r benutzt werden, die sich stets an der Bauteilkante befindlichen QSH-Randkan{\"a}le einander r{\"a}umlich anzun{\"a}hern, was beispielsweise die Untersuchung potentieller Wechselwirkungseffekte zwischen ebenjenen Randkan{\"a}len erm{\"o}glicht. Die vorliegende Arbeit beschreibt die erstmalig erfolgreich durchgef{\"u}hrte Implementierung einer QPC-Technologie in einem QSH-System. {\"U}berdies werden die neuartigen Bauteile experimentell charakterisiert sowie analysiert. Nach einer in Kapitel 1 erfolgten Einleitung der Arbeit besch{\"a}ftigt sich das nachfolgende Kapitel 2 zun{\"a}chst mit der besonderen Bandstruktur von HgTe. In diesem Kontext wird die Ausbildung der QSH-Phase f{\"u}r HgTe-Quantentr{\"o}ge mit einer invertierten Bandstruktur erl{\"a}utert, welche f{\"u}r deren Auftreten eine Mindesttrogdicke von d_QW > d_c = 6.3 nm aufweisen m{\"u}ssen. Im Anschluss wird das Konzept eines QPCs allgemein eingef{\"u}hrt sowie das zugeh{\"o}rige Transportverhalten analytisch beschrieben. {\"U}berdies werden die Einschr{\"a}nkungen und Randbedingungen diskutiert, welche bei der Realisierung eines QPCs in einem QSH-System Ber{\"u}cksichtigung finden m{\"u}ssen. Darauf folgt die Pr{\"a}sentation des eigens zur QPC-Herstellung entwickelten Lithographieprozesses, welcher auf einer mehrstufigen Anwendung eines f{\"u}r HgTe-Quantentrogstrukturen geeigneten nasschemischen {\"A}tzverfahrens beruht. Die im Nachgang diskutierten Transportmessungen exemplarischer Proben zeigen die erwartete Leitwertquantisierung in Schritten von ΔG ≈ 2e^2/h im Bereich des Leitungsbandes -- sowohl f{\"u}r eine topologische als auch f{\"u}r eine triviale (d_QW < d_c) QPC-Probe. Mit dem Erreichen der Bandl{\"u}cke saturiert der Leitwert f{\"u}r den topologischen QPC um G_QSH ≈ 2e^2/h, wohingegen ebenjener f{\"u}r den Fall des trivialen Bauteils auf G ≈ 0 abf{\"a}llt. Dar{\"u}ber hinaus belegen durchgef{\"u}hrte Messungen des differentiellen Leitwertes einer invertierten QPC-Probe in Abh{\"a}ngigkeit einer Biasspannung die stabile Koexistenz von topologischen und trivialen Transportmoden. Gegenstand von Kapitel 3 ist die Beschreibung der Ausbildung eines QSH-Interferometers in QPCs mit geringer Weite, welche unter Verwendung von Quantentr{\"o}gen mit einer Trogdicke von d_QW = 7 nm hergestellt werden. Die Diskussion von Bandstrukturrechnungen legt dar, dass die r{\"a}umliche Ausdehnung der Randkan{\"a}le von der jeweiligen Position der Fermi-Energie im Bereich der Bandl{\"u}cke abh{\"a}ngt. Hieraus resultiert eine Transportsituation, in welcher -- unter bestimmten Voraussetzungen -- Reservoir-Elektronen mit randomisiertem Spin an beide QSH-Randkan{\"a}le mit gleicher Wahrscheinlichkeit koppeln, was in der Ausbildung eines QSH-Rings resultiert. Diese Ringbildung wird im Rahmen eines durch Plausibilit{\"a}ts{\"u}berpr{\"u}fung getesteten Modells erkl{\"a}rt und spezifiziert. Danach erfolgt eine theoretische Einf{\"u}hrung von drei relevanten Quantenphasen, deren Akkumulation in der Folge f{\"u}r mehrere geeignete QPC-Proben nachgewiesen wird. Es handelt sich hierbei um die Aharonov-Bohm-Phase, um die dynamische Aharonov-Casher-Phase sowie um eine Spin-Bahn-Berry-Phase mit einem Wert von π. Diese experimentellen Ergebnisse stehen dar{\"u}ber hinaus im Einklang mit analytischen Modellbetrachtungen. Das anschließende Kapitel 4 stellt den letzten Teil der Arbeit dar und besch{\"a}ftigt sich mit der Beobachtung einer anomalen Leitwertsignatur, welche f{\"u}r QPC-Proben basierend auf einer Quantentrogdicke von d_QW = 10.5 nm auftritt. Diese Proben zeigen neben der durch die QSH-Phase bedingten Leitwertquantisierung von G_QSH ≈ 2e^2/h ein weiteres Leitwertplateau mit einem Wert von G ≈ e^2/h = 0.5 x G_QSH. Diese sogenannte 0.5-Anomalie ist nur f{\"u}r ein kleines Intervall von QPC-Weiten beobachtbar und wird mit zunehmender Bauteilweite abgeschw{\"a}cht. Weiterf{\"u}hrende Untersuchungen in Abh{\"a}ngigkeit der Temperatur sowie einer angelegten Biasspannung deuten dar{\"u}ber hinaus darauf hin, dass das Auftreten der 0.5-Anomalie mit einem modifizierten topologischen Zustand einhergeht. {\"U}berdies wird eine zus{\"a}tzliche sowie vervollst{\"a}ndigende Charakterisierung dieses Transportregimes durch die Realisierung eines neuartigen Bauteilkonzeptes m{\"o}glich, welches einen QPC in eine standardisierte Hall-Bar-Geometrie integriert. Das Ergebnis der experimentellen Analyse einer solchen Probe verkn{\"u}pft das Auftreten der 0.5-Anomalie mit der R{\"u}ckstreuung eines QSH-Randkanals. Demgem{\"a}ß wird aus Sicht des Einteilchenbildes geschlussfolgert, dass im Kontext der 0.5-Anomalie lediglich ein Randkanal transmittiert wird. Zudem werden zwei theoretische Modelle basierend auf Elektron-Elektron-Wechselwirkungen diskutiert, welche beide jeweils als urs{\"a}chlicher Mechanismus f{\"u}r das Auftreten der 0.5-Anomalie in Frage kommen. Abschließend ist zu deduzieren, dass die Implementierung einer QPC-Technologie in einem QSH-System eine bedeutende Entwicklung im Bereich der Erforschung von zweidimensionalen topologischen Isolatoren darstellt, welche eine Vielzahl zuk{\"u}nftiger Experimente erm{\"o}glicht. So existieren beispielsweise theoretische Vorhersagen, dass QPCs in einem QSH-System die Detektion von Majorana- sowie Para-Fermionen erm{\"o}glichen. {\"U}berdies ist die nachgewiesene Ausbildung eines QSH-Interferometers in geeigneten QPC-Proben eine Beobachtung von großer Folgewirkung. So erm{\"o}glicht die beobachtete dynamische Aharonov-Casher-Phase im QSH-Regime die kontrollierbare Modulation des topologischen Leitwertes, was die konzeptionelle Grundlage eines topologischen Transistors darstellt. Eine weitere Anwendungsm{\"o}glichkeit wird durch die Widerstandsf{\"a}higkeit geometrischer Phasen gegen{\"u}ber Dephasierung er{\"o}ffnet, wodurch die nachgewiesene Spin-Bahn-Berry-Phase mit einem Wert von π im Kontext potentieller Quantencomputerkonzepte von Interesse ist. Dar{\"u}ber hinaus ist die Transmission von nur einem QSH-Randkanal im Zuge des Auftretens der 0.5-Anomalie {\"a}quivalent zu 100 \% Spinpolarisierung, was einen Faktor essentieller Relevanz f{\"u}r die Realisierung spintronischer Anwendungen darstellt. Demgem{\"a}ß beinhaltet die vorliegende Arbeit den experimentellen Nachweis von drei unterschiedlichen Effekten, von welchen jedem einzelnen eine fundamentale Rolle im Rahmen der Entwicklung neuer Generationen logischer Bauelemente zukommen kann -- erm{\"o}glicht durch die Realisierung von QPCs in topologischen HgTe-Quantentr{\"o}gen.}, subject = {Topologischer Isolator}, language = {en} } @article{MuellerSpenstKagereretal.2022, author = {M{\"u}ller, Ulrich and Spenst, Peter and Kagerer, Philipp and Stolte, Matthias and W{\"u}rthner, Frank and Pflaum, Jens}, title = {Photon-Correlation Studies on Multichromophore Macrocycles of Perylene Dyes}, series = {Advanced Optical Materials}, volume = {10}, journal = {Advanced Optical Materials}, number = {14}, doi = {10.1002/adom.202200234}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287219}, year = {2022}, abstract = {Organic dyes offer unique properties for their application as room temperature single photon emitters. By means of photon-correlation, the emission characteristics of macrocyclic para-xylylene linked perylene bisimide (PBI) trimers and tetramers dispersed in polymethyl methacrylate matrices are analyzed. The optical data indicate that, despite of the strong emission enhancement of PBI trimers and tetramers according to their larger number of chromophores, the photon-correlation statistics still obeys that of single photon emitters. Moreover, driving PBI trimers and tetramers at higher excitation powers, saturated emission behavior for monomers is found while macrocycle emission is still far-off saturation but shows enhanced fluctuations. This observation is attributed to fast singlet-singlet annihilation, i.e., faster than the radiative lifetime of the excited S1 state, and the enlarged number of conformational arrangements of multichromophores in the polymeric host. Finally, embedding trimeric PBI macrocycles in active organic light-emitting diode matrices, electrically driven bright fluorescence together with an indication for antibunching at room temperature can be detected. This, so far, has only been observed for phosphorescent emitters that feature much longer lifetimes of the excited states and, thus, smaller radiative recombination rates. The results are discussed in the context of possible effects on the g(2) behavior of molecular emitters.}, language = {en} }