@article{ChristlTuerkPetersetal.1994, author = {Christl, Manfred and T{\"u}rk, M. and Peters, K. and Peters, E.-M. and Schnering, H. G. von}, title = {Octahydro-1,2,3:4,5,6-dimethenopentalene-2-carbonitrile, the First Derivative of a Yet-Unknown (CH)\(_{10}\)-Hydrocarbon}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58731}, year = {1994}, abstract = {No abstract available}, subject = {Organische Chemie}, language = {en} } @article{BentleyChristlKemmeretal.1994, author = {Bentley, T. W. and Christl, Manfred and Kemmer, R. and Llewellyn, G. and Oakley, J. E.}, title = {Kinetic and Spectroscopic Characterisation of Highly Reactive Methanesulfonates. Leaving Group Effects for Solvolyses and Comments on Geminal Electronic Effects Influencing S\(_N\)1 Reactivity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58748}, year = {1994}, abstract = {Highly reactive methanesulfonates (mesylates, ROMs) have been prepared from 1-phenylethanol. cyclohex-2-en-1-ol, diphenylmethanol and p-methoxybenzyl alcohol by treatment with methanesulfonyl chloride and triethylamine in dichloro- or trichloro-methane at - 20 to 0 °C. The mesylates. characterised in solution by \(^1\)H and \(^{13}\)C NMR at -20 °C, were obtained in satisfactory purity (ca. 95\%) in cold solutions but they decomposed by reaction with chloride, triethylamine or the parent alcohol. Rate constants for solvolyses in aqueous acetone and aqueous ethanol have been determined by a fast response conductimetric method. Product selectivities for solvolyses of pmethoxybenzyl mesylate in aqueous ethanol and methanol at 0 °C have been determined by HPLC. From additional new or Iiterature kinetic data for solvolyses of corresponding bromides. chlorides and p-nitrobenzoates (OPNB). Br/CI. OMs/Br and OMs/OPNB rate ratios were calculated; the results are consistent with electronic effects stabilising the carbocationic transition states and increasing OMs/Br rate ratios for these SN 1 solvolyses; none of the evidence supports a geminal electronic effect on Br/CI rate ratios (e.g. caused by stabilisation of the initial state in pmethoxybenzyl chloride). Steric effects on ester /halide rate ratios for solvolyses of tertiary substrates are confirmed. Relative rates over a 10\(^{16}\) range for ester and halide leaving groups are evaluated for solvolyses of 1-phenylethyl substrates in 80\% ethanol-water. updating previous work by Noyce et al. (1972).}, subject = {Organische Chemie}, language = {en} } @article{SuterPlessErnzerhofetal.1994, author = {Suter, H. U. and Pleß, V. and Ernzerhof, M. and Engels, Bernd}, title = {Difficulties in the Calculation of Electron Spin Resonance Parameters using Density Functional Methods}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59113}, year = {1994}, abstract = {Density functional theory is applied to the calculation ofthe isotropic byperfine coupJing constants in some small molecules. Various functionals are tested. The agreement of the calculated values to experimental data and values obtained from sophisticated ab initio methods depends on the functionals used and the system under consideration. With respect to spin density calculations the functional of Lee, Yang and Parr with Becke's excbange functional (BLYP) is found to give good results for tbe heavier center of the CH and the NH molecule, while the spin densities of other molecules such as OH, H\(_2\)CN, H\(_2\)CO\(^+\), NO and O\(_2\) deviate considerably from experimental and/or other theoretical results (30\%-60\%). In cases where the singly occupied orbital can contribute to the isotropic hyperfine coupling constants, accurate results are obtained. The reason fortbis is analyzed.}, subject = {Organische Chemie}, language = {en} } @article{MuehlhaeuserFroudakisZdetsisetal.1994, author = {M{\"u}hlh{\"a}user, M. and Froudakis, G. and Zdetsis, A. and Engels, Bernd and Flytzanis, N. and Peyerimhoff, S. D.}, title = {Ab initio investigation of the stability of Si\(_3\)C<\(_3\) clusters and their structural and bonding features}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59060}, year = {1994}, abstract = {Various structural possibilities for Si\(_3\)C\(_3\) clusters are investigated by ab initio calculations employing basis sets of double- and triple-zeta quality augmented by d polarization functions. Correlation effects are included by a second-order Moeller Piesset perturbation treatment. For the two lowest-lying structures higher-order correlation corrections and multi-reference effects are also included. Bonding features are investigated by two different types of population analyses to obtain insight into the nature of chemical bonding. A total of 17 stationary points were investigated, 14 of which correspond to local minima and three being transition states. The energetically lowest-lying structures are: A "pyramidlike" structure with various multicenter bonds, followed by a es symmetric isomer closely related to the ground state Si6 structure. Planar structures, favoured in small carbon clusters, lie higher in energy and are transition states. The lowest-lying triplet system is found to be the linear nonsymmetric Si - C-C-C-Si -Si structure, which is calculated to lie about 38 kcalfmole above the singlet ground state. A building-up principle based on bonding criteria is suggested for the occurence of the various structural possibilities.}, subject = {Organische Chemie}, language = {en} } @article{WortmannSalehEngelsPeyerimhoff1994, author = {Wortmann-Saleh, D. and Engels, Bernd and Peyerimhoff, S. D.}, title = {Theoretical Study of the Reaction O(\(^3\)P) + C\(_2\)H\(_4\) and comparison with the \(^3\)CH\(_3\) + C\(_2\)H\(_4\) Reaction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59076}, year = {1994}, abstract = {The minimum energy path for the reaction O(\(^3\)P\(_g\)) + C\(_2\)H\(_4\)(\(^1\)A\(_g\)) has been calculated by optimizing all relevant geometrical parameters along the approach of oxygen to ethene. A barrier of 4.7 kcal/mol in the \(^3\)A"( ... 9a'\(^2\)- 10a'3a") potential energy surface and an energy difference of 14.4 kcal/mol between the product and the fragments is found at the multireference-configuration interaction level. The corresponding values at the lower-level treatment CASSCF are 9 kcal/mol for the barrier and 9 kcal/mol for the depth of the potential; this shows the importance of inclusion of electron correlation. The barrier for CH\(_2\) rotation for the lowestenergy structure (asymmetric OC\(_2\)H\(_4\)) is around 5 kcal/mol. The energy gap to the first excited state \(^3\)A'( ... 9a'l0a'3a'12) is found tobe 3.6 kcal/mol in MRD-CI calculations at the ground-state minimum. Comparison with \(^3\)CH\(_2\) + C\(_2\)H\(_4\) shows that in this system the lowest-energy surface is \(^3\)A', i.e., the state which is the excited state in 0 + C\(_2\)H\(_4\). This difference in energy ordering of \(^3\)A' and \(^3\)A" states results from the fact that the p\(_x\), p\(_y\), p\(_z\) degeneracy of oxygen orbitals is lifted in \(^3\)CH\(_2\)leading to b\(_1\), b\(_2\). and a\(_1\) MOs whereby the lowest b\(_2\) (a") remains doubly occupied; as a consequence, the reaction pattem between the oxygen and \(^3\)CH\(_2\) approach is different, which is also quite apparent in the calculated charge transfer.}, subject = {Organische Chemie}, language = {en} } @article{StaikovaPericEngelsetal.1994, author = {Staikova, M. and Peric, M. and Engels, Bernd and Peyerimhoff, S. D.}, title = {Ab initio Investigation of the Structure of the X\(^2\)A', A\(^2\)A'' (1\(^2\)Π) Spectral System of HCO: Investigation of the Magnetic Hyperfine Effects}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59089}, year = {1994}, abstract = {Results ofan ab initio study ofthe hyperfine structure of the X\(^2\)A', A\(^2\) A" ( 1\(^2 \Pi\)) system ofthe formyl radical are presented. Special attention is paid to the analysis of the interplay between the vibronic and magnetic hyperfine etfects. The results of computations are in very good agreement with the available experimental findings. The values for the hyperfine coupling constants in lower bending Ievels of both electronic species are predicted.}, subject = {Organische Chemie}, language = {en} } @article{FroudakisZdetsisMuehlhaeuseretal.1994, author = {Froudakis, G. and Zdetsis, A. and M{\"u}hlh{\"a}user, M. and Engels, Bernd and Peyerimhoff, S. D.}, title = {A comparative ab initio study of the Si\(_2\)C\(_4\), Si\(_3\)C\(_3\), Si\(_4\)C\(_2\) clusters}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59097}, year = {1994}, abstract = {Various structural possibilities for the Si\(_2\)C\(_4\) and Si\(_4\)C\(_2\) clusters are investigated by employing a basis set of triple-zeta plus polarization quality; electron correlation is generally accounted for by second-order M0ller-Plesset and, in certain instances, by higher-order perturbation (CASPT2) approaches. The building-up principle recently suggested from an analysis of Si\(_3\)C\(_3\) clusters is found to be fully operative for Si\(_2\)C\(_4\) and Si\(_4\)C\(_2\) clusters. A comparison of the structure and stability of various geometrical arrangements in the series C\(_6\) , Si\(_2\)C\(_4\) , Si\(_3\)C\(_3\) , Si\(_4\)C\(_2\), and Si\(_6\) shows that linear and planar structures become rapidly less stable if carbons are replaced by silicons and that the three-dimensional bipyramidal forms become less favorable as soon as silicons are exchanged by carbons in the parent Si\(_6\) structure. The effects can be rationalized in qualitative terms based on differences in silicon and carbon bonding.}, subject = {Organische Chemie}, language = {en} } @article{SuterHuangEngels1994, author = {Suter, H. U. and Huang, M.-B. and Engels, Bernd}, title = {A Multireference Configuration Interaction Study of the Hyperfine Structure of the Molecules CCO, CNN and NCN in their triplet ground states}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59108}, year = {1994}, abstract = {The hyperfine structures of the isoelectronic molecules CCO. CNN, and NCN in their triplet ground states (X\(^3 \sum ^-\)) are investigated by means of ab initio methods. The infrared frequencies and geometries are detennined and compared with experiment. Configuration selected multireference configuration interaction calculations in combination with perturbation theory to correct the wave function (MRD-CI/B\(_K\)) employing extended atomic orbital (AO) basis sets yielded very accurate hyperfine properties. The theoretical values for CCO are in excellent agreement with the experimental values determined by Smith and Weltner [J. Chem. Phys. 62,4592 (1975)]. For CNN, the first assignment of Smith and Weltner for the two nitrogen atoms has to be changed. A qualitative discussion of the electronic structure discloses no simple relation between the structure of the singly occupied orbitals and the measured hyperfine coupling constants. Vibrational effects were found to be of little importance.}, subject = {Organische Chemie}, language = {en} } @article{StaikovaEngelsPeric1994, author = {Staikova, M. and Engels, Bernd and Peric, M.}, title = {Ab initio investigation of the hyperfine structure in the 1\(^2\)Π\(_u\)(X\(^2\)A\(_1\), A\(^2\)B\(_1\) system of BH\(_2\))}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59000}, year = {1994}, abstract = {No abstract available}, subject = {Organische Chemie}, language = {en} } @article{Engels1994, author = {Engels, Bernd}, title = {Detailed study of the configuration selected multi-reference configuration interaction method combined with perturbation theory to correct the wave function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59019}, year = {1994}, abstract = {A reliable prediction of the isotropic hyperfine coupling constant A\(_{iso}\) is still a difficult task for ab initio calculations. In previous studies, the configuration selected multireference configuration interaction method in combination with perturbation theory to correct the wave function (MRCI/ B\(_K\)) yielded accurate isotropic hyperfine coupling constants very economically. The present study gives a detailed analysis of the MRCI/ B\(_K\) method based on the X\(^2 \pi\) state of CH as a test case. Furthermore, a comparison to various other methods such as Maller-Ptesset perturbation theory and the coupled cluster approach is made. The success of the MRCI/ B\(_K\) method in predicting isotropic hyperfine coupling constants is explained in terms of the inßuence of higher than double excitations.}, subject = {Organische Chemie}, language = {en} }