@phdthesis{Sareen2011, author = {Sareen, Preeti}, title = {Visual attention in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {There is such vast amount of visual information in our surroundings at any time that filtering out the important information for further processing is a basic requirement for any visual system. This is accomplished by deploying attention to focus on one source of sensory inputs to the exclusion of others (Luck and Mangun 2009). Attention has been studied extensively in humans and non human primates (NHPs). In Drosophila, visual attention was first demonstrated in 1980 (Wolf and Heisenberg 1980) but this field remained largely unexplored until recently. Lately, however, studies have emerged that hypothesize the role of attention in several behaviors but do not specify the characteristic properties of attention. So, the aim of this research was to characterize the phenomenon of visual attention in wild-type Drosophila, including both externally cued and covert attention using tethered flight at a torque meter. Development of systematic quantifiable behavioral tests was a key aspect for this which was not only important for analyzing the behavior of a population of wild-type flies but also for comparing the wild-type flies with mutant flies. The latter would help understand the molecular, genetic, and neuronal bases of attention. Since Drosophila provides handy genetic tools, a model of attention in Drosophila will serve to the greater questions about the neuronal circuitry and mechanisms involved which might be analogous to those in primates. Such a model might later be used in research involving disorders of attention. Attention can be guided to a certain location in the visual field by the use of external cues. Here, using visual cues the attention of the fly was directed to one or the other of the two visual half-fields. A simple yet robust paradigm was designed with which the results were easily quantifiable. This paradigm helped discover several interesting properties of the cued attention, the most substantial one being that this kind of external guidance of attention is restricted to the lower part of the fly's visual field. The guiding cue had an after-effect, i.e. it could occur at least up to 2 seconds before the test and still bias it. The cue could also be spatially separated from the test by at least 20° and yet attract the attention although the extent of the focus of attention (FoA) was smaller than one lower visual half-field. These observations excluded the possibility of any kind of interference between the test and the cue stimuli. Another interesting observation was the essentiality of continuous visibility of the test stimulus but not the cue for effective cuing. When the contrast of the visual scene was inverted, differences in response frequencies and cuing effects were observed. Syndirectional yaw torque responses became more frequent than the antidirectional responses and cuing was no longer effective in the lower visual field with inverted contrast. Interestingly, the test stimulus with simultaneous displacement of two stripes not only effectuated a phasic yaw torque response but also a landing response. A 50 landing response was produced in more than half of the cases whenever a yaw torque response was produced. Elucidation of the neuronal correlates of the cued attention was commenced. Pilot experiments with hydroxyurea (HU) treated flies showed that mushroom bodies were not required for the kind of guidance of attention tested in this study. Dopamine mutants were also tested for the guidance of attention in the lower visual field. Surprisingly, TH-Gal4/UAS-shits1 flies flew like wild-type flies and also showed normal optomotor response during the initial calibration phase of the experiment but did not show any phasic yaw torque or landing response at 18 °C, 25 °C or 30 °C. dumb2 flies that have almost no D1 dopamine receptor dDA1 expression in the mushroom bodies and the central complex (Kim et al. 2007) were also tested and like THGal4/ UAS-shits1 flies did not show any phasic yaw torque or landing response. Since the dopamine mutants did not show the basic yaw torque response for the test the role of dopamine in attention could not be deduced. A different paradigm would be needed to test these mutants. Not only can attention be guided through external cues, it can also be shifted endogenously (covert attention). Experiments with the windows having oscillating stripes nicely demonstrated the phenomenon of covert attention due to the production of a characteristic yaw torque pattern by the flies. However, the results were not easily quantifiable and reproducible thereby calling for a more systematic approach. Experiments with simultaneous opposing displacements of two stripes provide a promising avenue as the results from these experiments showed that the flies had a higher tendency to deliver one type of response than when the responses would be produced stochastically suggesting that attention increased this tendency. Further experiments and analysis of such experiments could shed more light on the mechanisms of covert attention in flies.}, subject = {Visuelle Aufmerksamkeit}, language = {en} }