@article{BuraBeaupreLegareetal.2018, author = {Bura, Thomas and Beaupr{\´e}, Serge and L{\´e}gar{\´e}, Marc-Andr{\´e} and Ibraikulov, Olzhas A. and Leclerc, Nicolas and Leclerc, Mario}, title = {Theoretical calculations for highly selective Direct Heteroarylation Polymerization: new nitrile-substituted Dithienyl-Diketopyrrolopyrrole-based polymers}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {9}, issn = {1420-3049}, doi = {10.3390/molecules23092324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197648}, pages = {2324}, year = {2018}, abstract = {Direct Heteroarylation Polymerization (DHAP) is becoming a valuable alternative to classical polymerization methods being used to synthesize π-conjugated polymers for organic electronics applications. In previous work, we showed that theoretical calculations on activation energy (Ea) of the C-H bonds were helpful to rationalize and predict the selectivity of the DHAP. For readers' convenience, we have gathered in this work all our previous theoretical calculations on Ea and performed new ones. Those theoretical calculations cover now most of the widely utilized electron-rich and electron-poor moieties studied in organic electronics like dithienyl-diketopyrrolopyrrole (DT-DPP) derivatives. Theoretical calculations reported herein show strong modulation of the Ea of C-H bond on DT-DPP when a bromine atom or strong electron withdrawing groups (such as fluorine or nitrile) are added to the thienyl moiety. Based on those theoretical calculations, new cyanated dithienyl-diketopyrrolopyrrole (CNDT-DPP) monomers and copolymers were prepared by DHAP and their electro-optical properties were compared with their non-fluorinated and fluorinated analogues.}, language = {en} } @article{HeideggerBeerGeissingeretal.2014, author = {Heidegger, Simon and Beer, Ambros J. and Geissinger, Eva and Rosenwald, Andreas and Peschel, Christian and Ringshausen, Ingo and Keller, Ulrich}, title = {Combination therapy with brentuximab vedotin and cisplatin/cytarabine in a patient with primarily refractory anaplastic lymphoma kinase positive anaplastic large cell lymphoma}, series = {Oncotargets and Therapy}, volume = {7}, journal = {Oncotargets and Therapy}, doi = {10.2147/OTT.S59795}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117901}, pages = {1123-1127}, year = {2014}, abstract = {Anaplastic large cell lymphoma (ALCL) is a common subtype of the heterogeneous group of peripheral T-cell lymphomas, which is characterized by large pleomorphic cells with strong expression of CD30. Translocations involving ALK, the anaplastic lymphoma kinase gene, are associated with a favorable clinical outcome. Such ALK-positive ALCLs are usually responsive to a multidrug chemotherapy with CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone). However, there is no general consensus on the optimal therapy for relapsed or refractory ALCL. We report the case of a 24-year-old male suffering from ALK-positive ALCL with an uncommon manifestation of only extranodal disease in the gastric cardia region that showed primary refractoriness to standard CHOP chemotherapy. A combination therapy consisting of the anti-CD30 drug conjugate, brentuximab vedotin, and classical lymphoma salvage regimen DHAP (cisplatin, high-dose cytarabine and dexamethasone) was administered. Following two treatment cycles in 21-day intervals, the lymphoma showed considerable regression based on imaging diagnostics and no evidence of vital lymphoma in a subsequent biopsy. We did not observe any increase in toxicity; in particular, polyneuropathy and febrile neutropenia were not observed. In summary, we report that the antibody-drug conjugate brentuximab vedotin and a classical regimen used for aggressive lymphoma, DHAP, could be combined as salvage therapy in a case of refractory ALK-positive ALCL. Phase I/II studies will be required for safety and efficacy analysis.}, language = {en} }