@article{HeydarianRuehlRawaletal.2022, author = {Heydarian, Motaharehsadat and R{\"u}hl, Eva and Rawal, Ravisha and Kozjak-Pavlovic, Vera}, title = {Tissue models for Neisseria gonorrhoeae research — from 2D to 3D}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {12}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2022.840122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263046}, year = {2022}, abstract = {Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea, the second most common sexually transmitted infection worldwide. Disease progression, drug discovery, and basic host-pathogen interactions are studied using different approaches, which rely on models ranging from 2D cell culture to complex 3D tissues and animals. In this review, we discuss the models used in N. gonorrhoeae research. We address both in vivo (animal) and in vitro cell culture models, discussing the pros and cons of each and outlining the recent advancements in the field of three-dimensional tissue models. From simple 2D monoculture to complex advanced 3D tissue models, we provide an overview of the relevant methodology and its application. Finally, we discuss future directions in the exciting field of 3D tissue models and how they can be applied for studying the interaction of N. gonorrhoeae with host cells under conditions closely resembling those found at the native sites of infection.}, language = {en} } @article{ThomannSchneiderCyranetal.2021, author = {Thomann, Anna Sophie and Schneider, Theresa and Cyran, Laura and Eckert, Ina Nathalie and Kerstan, Andreas and Lutz, Manfred B.}, title = {Conversion of Anergic T Cells Into Foxp3\(^-\) IL-10\(^+\) Regulatory T Cells by a Second Antigen Stimulus In Vivo}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.704578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241429}, year = {2021}, abstract = {T cell anergy is a common mechanism of T cell tolerance. However, although anergic T cells are retained for longer time periods in their hosts, they remain functionally passive. Here, we describe the induction of anergic CD4\(^+\) T cells in vivo by intravenous application of high doses of antigen and their subsequent conversion into suppressive Foxp3\(^-\) IL-10\(^+\) Tr1 cells but not Foxp3\(^+\) Tregs. We describe the kinetics of up-regulation of several memory-, anergy- and suppression-related markers such as CD44, CD73, FR4, CD25, CD28, PD-1, Egr-2, Foxp3 and CTLA-4 in this process. The conversion into suppressive Tr1 cells correlates with the transient intracellular CTLA-4 expression and required the restimulation of anergic cells in a short-term time window. Restimulation after longer time periods, when CTLA-4 is down-regulated again retains the anergic state but does not lead to the induction of suppressor function. Our data require further functional investigations but at this stage may suggest a role for anergic T cells as a circulating pool of passive cells that may be re-activated into Tr1 cells upon short-term restimulation with high and systemic doses of antigen. It is tentative to speculate that such a scenario may represent cases of allergen responses in non-allergic individuals.}, language = {en} } @article{BittorfBergmannMerlinetal.2020, author = {Bittorf, Patrick and Bergmann, Thorsten and Merlin, Simone and Olgasi, Chistina and Pullig, Oliver and Sanzenbacher, Ralf and Zierau, Martin and Walles, Heike and Follenzi, Antonia and Braspenning, Joris}, title = {Regulatory-Compliant Validation of a Highly Sensitive qPCR for Biodistribution Assessment of Hemophilia A Patient Cells}, series = {Molecular Therapy - Methods \& Clinical Development}, volume = {18}, journal = {Molecular Therapy - Methods \& Clinical Development}, doi = {10.1016/j.omtm.2020.05.029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230284}, pages = {176-188}, year = {2020}, abstract = {The investigation of the biodistribution profile of a cell-based medicinal product is a pivotal prerequisite to allow a factual benefit-risk assessment within the non-clinical to clinical translation in product development. Here, a qPCR-based method to determine the amount of human DNA in mouse DNA was validated according to the guidelines of the European Medicines Agency and the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Furthermore, a preclinical worst-case scenario study was performed in which this method was applied to investigate the biodistribution of 2 x 10\(^6\) intravenously administered, genetically modified, blood outgrowth endothelial cells from hemophilia A patients after 24 h and 7 days. The validation of the qPCR method demonstrated high accuracy, precision, and linearity for the concentration interval of 1:1 x 10\(^3\) to 1:1 x 10\(^6\) human to mouse DNA. The application of this method in the biodistribution study resulted in the detection of human genomes in four out of the eight investigated organs after 24 h. After 7 days, no human DNA was detected in the eight organs analyzed. This biodistribution study provides mandatory data on the toxicokinetic safety profile of an actual candidate cell-based medicinal product. The extensive evaluation of the required validation parameters confirms the applicability of the qPCR method for non-clinical biodistribution studies.}, language = {en} } @article{BauriedlGerovacHeidrichetal.2020, author = {Bauriedl, Saskia and Gerovac, Milan and Heidrich, Nadja and Bischler, Thorsten and Barquist, Lars and Vogel, J{\"o}rg and Schoen, Christoph}, title = {The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-16650-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230040}, year = {2020}, abstract = {FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence.}, language = {en} } @article{GaoNagpalSchneideretal.2015, author = {Gao, Shiqiang and Nagpal, Jatin and Schneider, Martin W. and Kozjak-Pavlovic, Vera and Nagel, Georg and Gottschalk, Alexander}, title = {Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {8046}, doi = {10.1038/ncomms9046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148197}, year = {2015}, abstract = {Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ~17 cGMPs\(^{-1}\)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O\(_2\)/CO\(_2\) sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.}, language = {en} } @article{KroeberWengerSchwegleretal.2015, author = {Kroeber, Jana and Wenger, Barbara and Schwegler, Manuela and Daniel, Christoph and Schmidt, Manfred and Djuzenova, Cholpon S and Polat, B{\"u}lent and Flentje, Michael and Fietkau, Rainer and Distel, Luitpold V.}, title = {Distinct increased outliers among 136 rectal cancer patients assessed by \(\gamma\)H2AX}, series = {Radiation Oncology}, volume = {10}, journal = {Radiation Oncology}, number = {36}, doi = {10.1186/s13014-015-0344-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144085}, year = {2015}, abstract = {Background: In recent years attention has focused on \(\gamma\)H2AX as a very sensitive double strand break indicator. It has been suggested that \(\gamma\)H2AX might be able to predict individual radiosensitivity. Our aim was to study the induction and repair of DNA double strand breaks labelled by \(\gamma\)H2AX in a large cohort. Methods: In a prospective study lymphocytes of 136 rectal cancer (RC) patients and 59 healthy individuals were ex vivo irradiated (IR) and initial DNA damage was compared to remaining DNA damage after 2 Gy and 24 hours repair time and preexisting DNA damage in unirradiated lymphocytes. Lymphocytes were immunostained with anti-\(\gamma\)H2AX antibodies and microscopic images with an extended depth of field were acquired. \(\gamma\)H2AX foci counting was performed using a semi-automatic image analysis software. Results: Distinct increased values of preexisting and remaining \(\gamma\)H2AX foci in the group of RC patients were found compared to the healthy individuals. Additionally there are clear differences within the groups and there are outliers in about 12\% of the RC patients after ex vivo IR. Conclusions: The \(\gamma\)H2AX assay has the capability to identify a group of outliers which are most probably patients with increased radiosensitivity having the highest risk of suffering radiotherapy-related late sequelae.}, language = {en} } @article{CeteciCeteciZanuccoetal.2012, author = {Ceteci, Fatih and Ceteci, Semra and Zanucco, Emanuele and Thakur, Chitra and Becker, Matthias and El-Nikhely, Nefertiti and Fink, Ludger and Seeger, Werner and Savai, Rajkumar and Rapp, Ulf R.}, title = {E-Cadherin Controls Bronchiolar Progenitor Cells and Onset of Preneoplastic Lesions in Mice}, series = {Neoplasia}, volume = {14}, journal = {Neoplasia}, number = {12}, doi = {10.1593/neo.121088}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135407}, pages = {1164-1177}, year = {2012}, abstract = {Although progenitor cells of the conducting airway have been spatially localized and some insights have been gained regarding their molecular phenotype, relatively little is known about the mechanisms regulating their maintenance, activation, and differentiation. This study investigates the potential roles of E-cadherin in mouse Clara cells, as these cells were shown to represent the progenitor/stem cells of the conducting airways and have been implicated as the cell of origin of human non-small cell lung cancer. Postnatal inactivation of E-cadherin affected Clara cell differentiation and compromised airway regeneration under injury conditions. In steady-state adult lung, overexpression of the dominant negative E-cadherin led to an expansion of the bronchiolar stem cells and decreased differentiation concomitant with canonical Wnt signaling activation. Expansion of the bronchiolar stem cell pool was associated with an incessant proliferation of neuroepithelial body-associated Clara cells that ultimately gave rise to bronchiolar hyperplasia. Despite progressive hyperplasia, only a minority of the mice developed pulmonary solid tumors, suggesting that the loss of E-cadherin function leads to tumor formation when additional mutations are sustained. The present study reveals that E-cadherin plays a critical role in the regulation of proliferation and homeostasis of the epithelial cells lining the conducting airways.}, language = {en} } @article{PonnuswamySchroettleOstermeieretal.2012, author = {Ponnuswamy, Padmapriya and Schr{\"o}ttle, Angelika and Ostermeier, Eva and Gr{\"u}ner, Sabine and Huang, Paul L. and Ertl, Georg and Hoffmann, Ulrich and Nieswandt, Bernhard and Kuhlencordt, Peter J.}, title = {eNOS Protects from Atherosclerosis Despite Relevant Superoxide Production by the Enzyme in apoE\(^{-/-}\) Mice}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0030193}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134866}, pages = {e30193}, year = {2012}, abstract = {Background: All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS) modulates leukocyte/endothelial-(L/E) and platelet/endothelial-(P/E) interactions in atherosclerosis and the production of nitric oxide (NO) and superoxide by the enzyme. Principal Findings: Intravital microscopy (IVM) of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE\(^{-/-}\)/eNOS\(^{-/-}\)), while P/E-interactions did not differ, compared to apoE\(^{-/-}\). eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1) expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS) in plaques, Electron Spin Resonance (ESR) measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE\(^{-/-}\) vessels. Conclusion: Overt plaque formation, increased vascular inflammation and L/E-interactions are associated with significant reduction of superoxide production in apoE\(^{-/-}\)/eNOS\(^{-/-}\) vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE\(^{-/-}\) atherosclerosis but does not negate the enzyme's strong protective effects.}, language = {en} } @article{SchattonYangKleffeletal.2015, author = {Schatton, Tobias and Yang, Jun and Kleffel, Sonja and Uehara, Mayuko and Barthel, Steven R. and Schlapbach, Christoph and Zhan, Qian and Dudeney, Stephen and Mueller, Hansgeorg and Lee, Nayoung and de Vries, Juliane C. and Meier, Barbara and Beken, Seppe Vander and Kluth, Mark A. and Ganss, Christoph and Sharpe, Arlene H. and Waaga-Gasser, Ana Maria and Sayegh, Mohamed H. and Abdi, Reza and Scharffetter-Kochanek, Karin and Murphy, George F. and Kupper, Thomas S. and Frank, Natasha Y. and Frank, Markus H.}, title = {ABCB5 Identifies Immunoregulatory Dermal Cells}, series = {Cell Reports}, volume = {12}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2015.08.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149989}, pages = {1564 -- 1574}, year = {2015}, abstract = {Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly defined immunomodulatory cell populations poses a barrier to this field. Here, we show that ATP-binding cassette member B5 (ABCB5) identifies dermal immunoregulatory cells (DIRCs) capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1). Purified Abcb5\(^+\) DIRCs suppressed T cell proliferation, evaded immune rejection, homed to recipient immune tissues, and induced Tregs in vivo. In fully major-histocompatibility-complex-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5\(^+\) DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy.}, language = {en} } @article{KohlGruendlerHuysetal.2015, author = {Kohl, S. and Gruendler, T. O. J. and Huys, D. and Sildatke, E. and Dembek, T. A. and Hellmich, M. and Vorderwulbecke, M. and Timmermann, L. and Ahmari, S. E. and Klosterkoetter, J. and Jessen, F. and Sturm, V. and Visser-Vandewalle, V. and Kuhn, J.}, title = {Effects of deep brain stimulation on prepulse inhibition in obsessive-compulsive disorder}, series = {Translational Psychiatry}, volume = {5}, journal = {Translational Psychiatry}, number = {e675}, doi = {10.1038/tp.2015.171}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138300}, year = {2015}, abstract = {Owing to a high response rate, deep brain stimulation (DBS) of the ventral striatal area has been approved for treatment-refractory obsessive-compulsive disorder (tr-OCD). Many basic issues regarding DBS for tr-OCD are still not understood, in particular, the mechanisms of action and the origin of side effects. We measured prepulse inhibition (PPI) in treatment-refractory OCD patients undergoing DBS of the nucleus accumbens (NAcc) and matched controls. As PPI has been used in animal DBS studies, it is highly suitable for translational research. Eight patients receiving DBS, eight patients with pharmacological treatment and eight age-matched healthy controls participated in our study. PPI was measured twice in the DBS group: one session with the stimulator switched on and one session with the stimulator switched off. OCD patients in the pharmacologic group took part in a single session. Controls were tested twice, to ensure stability of data. Statistical analysis revealed significant differences between controls and (1) patients with pharmacological treatment and (2) OCD DBS patients when the stimulation was switched off. Switching the stimulator on led to an increase in PPI at a stimulus-onset asynchrony of 200 ms. There was no significant difference in PPI between OCD patients being stimulated and the control group. This study shows that NAcc-DBS leads to an increase in PPI in tr-OCD patients towards a level seen in healthy controls. Assuming that PPI impairments partially reflect the neurobiological substrates of OCD, our results show that DBS of the NAcc may improve sensorimotor gating via correction of dysfunctional neural substrates. Bearing in mind that PPI is based on a complex and multilayered network, our data confirm that DBS most likely takes effect via network modulation.}, language = {en} }