@article{LuebbeLamarqueDelzonetal.2022, author = {L{\"u}bbe, Torben and Lamarque, Laurent J. and Delzon, Sylvain and Torres Ruiz, Jos{\´e} M. and Burlett, R{\´e}gis and Leuschner, Christoph and Schuldt, Bernhard}, title = {High variation in hydraulic efficiency but not xylem safety between roots and branches in four temperate broad-leaved tree species}, series = {Functional Ecology}, volume = {36}, journal = {Functional Ecology}, number = {3}, issn = {0269-8463}, doi = {10.1111/1365-2435.13975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318587}, pages = {699 -- 712}, year = {2022}, abstract = {Xylem hydraulic safety and efficiency are key traits determining tree fitness in a warmer and drier world. While numerous plant hydraulic studies have focused on branches, our understanding of root hydraulic functioning remains limited, although roots control water uptake, influence stomatal regulation and have commonly been considered as the most vulnerable organ along the hydraulic pathway. We investigated 11 traits related to xylem safety and efficiency along the hydraulic pathway in four temperate broad-leaved tree species. Continuous vessel tapering from coarse roots to stems and branches caused considerable reduction in hydraulic efficiency. Wood density was always lowest in roots, but did not decline linearly along the flow path. In contrast, xylem embolism resistance (P50) did not differ significantly between roots and branches, except for one species. The limited variation in xylem safety between organs did not adequately reflect the corresponding reductions in vessel diameter (by ~70\%) and hydraulic efficiency (by ~85\%). Although we did not observe any trade-off between xylem safety and specific conductivity, vessel diameter, vessel lumen fraction and wood density were related to embolism resistance, both across and partly within organs. We conclude that coarse roots are not highly vulnerable to xylem embolism as commonly believed, indicating that hydraulic failure during soil drying might be restricted to fine roots.}, language = {en} } @article{LiLiLinketal.2019, author = {Li, Shan and Li, Xin and Link, Roman and Li, Ren and Deng, Liping and Schuldt, Bernhard and Jiang, Xiaomei and Zhao, Rongjun and Zheng, Jingming and Li, Shuang and Yin, Yafang}, title = {Influence of cambial age and axial height on the spatial patterns of xylem traits in Catalpa bungei, a ring-porous tree species native to China}, series = {Forests}, volume = {10}, journal = {Forests}, number = {8}, issn = {1999-4907}, doi = {10.3390/f10080662}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196297}, year = {2019}, abstract = {Studying how cambial age and axial height affects wood anatomical traits may improve our understanding of xylem hydraulics, heartwood formation and axial growth. Radial strips were collected from six different heights (0-11.3 m) along the main trunk of three Manchurian catalpa (Catalpa bungei) trees, yielding 88 samples. In total, thirteen wood anatomical vessel and fiber traits were observed usinglight microscopy (LM) and scanning electron microscopy (SEM), and linear models were used to analyse the combined effect of axial height, cambial age and their interaction. Vessel diameter differed by about one order of magnitude between early- and latewood, and increased significantly with both cambial age and axial height in latewood, while it was positively affected by cambial age and independent of height in earlywood. Vertical position further had a positive effect on earlywood vessel density, and negative effects on fibre wall thickness, wall thickness to diameter ratio and length. Cambial age had positive effects on the pit membrane diameter and vessel element length, while the annual diameter growth decreased with both cambial age and axial position. In contrast, early- and latewood fiber diameter were unaffected by both cambial age and axial height. We further observed an increasing amount of tyloses from sapwood to heartwood, accompanied by an increase of warty layers and amorphous deposits on cell walls, bordered pit membranes and pit apertures. This study highlights the significant effects of cambial age and vertical position on xylem anatomical traits, and confirms earlier work that cautions to take into account xylem spatial position when interpreting wood anatomical structures, and thus, xylem hydraulic functioning.}, language = {en} }