@phdthesis{Delto2015, author = {Delto, Carolyn Francesca}, title = {Structural and Biochemical Characterization of the GABA(A) Receptor Interacting Protein Muskelin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115922}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In a study from 2011, the protein muskelin was described as a central coordinator of the retrograde transport of GABA(A) receptors in neurons. As muskelin governs the transport along actin filaments as well as microtubules, it might be the first representative of a novel class of regulators, which coordinate cargo transport across the borders of these two independent systems of transport paths and their associated motorproteins. To establish a basis for understanding the mode of operation of muskelin, the aim of this thesis was an in-depth biochemical and structural characterization of muskelin and its interaction with the GABA(A) receptor. One focus of the work was the analysis of the oligomerization of muskelin. As could be demonstrated, the oligomerization is based on two independent interactions mediated by different domains of the protein: a known interaction of the N-terminal discoidin domain with the C-terminal portion, termed head-to-tail interaction, and a dimerization of the LisH motif in muskelin that was so far neglected in the literature. For the detailed studies of both binding events, the solution of a crystal structure of a fragment of muskelin, comprising the Discoidin domain and the LisH motif, was an important basis. The fragment crystallized as a dimer, with dimerization being mediated solely by the LisH motif. Biochemical analysis corroborated that the LisH motif in muskelin serves as a dimerization element, and, moreover, showed that the C-terminal domain of the protein substantially stabilizes this dimerization. In addition, the crystal structure revealed the molecular composition of the surface of the head in the head-to-tail interaction, namely the discoidin domain. This information enabled to map the amino acids contributing to binding, which showed that the binding site of the head-to-tail interaction coincides with the generic ligand binding site of the discoidin domain. As part of the analyses, residues that are critical for LisH-dimerization and the head-to-tail binding, respectively, were identified, whose mutation specifically interfered with each of the interactions separately. These mutations allowed to investigate the interplay of these interactions during oligomerization. It could be shown that recombinant muskelin assembles into a tetramer to which both interactions, the LisH-dimerization and the head-to-tail binding, contribute independently. When one of the two interactions was disturbed, only a dimer mediated via the respective other interaction could be formed; when both interactions were disturbed, the protein was present as monomer. Furthermore, Frank Heisler in the group of Matthias Kneussel was able to show the drastic impact of an impaired LisH-dimerization on muskelin in cells using these mutations. Disturbing the LisH-dimerization led to a complete redistribution of the originally cytoplasmic muskelin to the nucleus which was accompanied by a severe impairment of its function during GABA(A) receptor transport. Following up on these results in an analysis of muskelin variants, for which alterations of the subcellular localization had been published earlier, the crucial influence of LisH-dimerization to the subcellular localization and thereby the role of muskelin in the cell was confirmed. The biochemical studies of the interaction of muskelin and the alpha1 subunit of the GABA(A) receptor demonstrated a direct binding with an affinity in the low micromolar range, which is mediated primarily by the kelch repeat domain in muskelin. For the binding site on the GABA(A) receptor, it was confirmed that the thirteen most C-terminal residues of the intracellular domain are critical for the binding of muskelin. In accordance with the strong conservation of these residues among the alpha subunits of the GABA(A) receptor, it could be shown that an interaction with muskelin in vitro is also possible for the alpha2 and alpha5 subunits. Based on the comparison of the binding sites between the homologous subunits, tentative conclusions can be drawn about the details of the binding, which may serve as a starting point for follow-up studies. This thesis thereby makes valuable contributions to the understanding of muskelin, in particular the significance of its oligomerization. It furthermore provides an experimental framework for future studies that address related topics, such as the characterization of other muskelin interaction partners, or the questions raised in this work.}, subject = {Oligomerisation}, language = {en} } @article{WeissSebald1978, author = {Weiss, H. and Sebald, Walter}, title = {Purification of cytochrome oxidase from Neurospora crassa and other sources}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82082}, year = {1978}, abstract = {A chromatographic procedure 1 is described by means of which cytochrome oxidase has been purified from a variety of organisms including the fungus N eurospora crassa,2,3 the unicellular alga Po/ytoma mirum, 4 the insect Locusta migratoria ,5 the frog Xenopus muel/eri,4 and the mammal Rattus norwegicus. 4 This procedure can be used to equal effect for large-scale preparations, starting from grams of mitochondrial protein, or for small-scale preparations starting from milligrams. The cytochrome oxidase preparations from the different organisms are enzymically active. They show similar subunit compositions.}, subject = {Biochemie}, language = {en} } @article{SebaldNeupertWeiss1979, author = {Sebald, Walter and Neupert, W. and Weiss, H.}, title = {Preparation of Neurospora crassa mitochondria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82070}, year = {1979}, abstract = {The fungus Neurospora crassa represents a eukaryotic cell with high biosynthetic activities. Cell mass doubles in 2-4 hr during expone ntial growth , even in simple salt media with sucrose as the sole carbon source. The microorgani sm forms a mycelium of long hyphae durlng vegetative growth . The mitochondria can be isolated under relatively gentle condi tions since a few breaks in the threadlike hyphae are sufficient to cause the outflow of the organelles. This article describes two methods for the physical disruption of the hyphae : (I) The cell s are opened in a grind mill between two rotating corundum di sks. This is a continuous and fast procedure and allows large- and small-scale preparations of mitochondria. (2) Hyphae are ground with sand in a mortar and pestle. This procedure can be applied to microscale preparations of mitochondria starting with minute amounts of cells. Other procedures for the isolation of Neurospora mitochondria after the physical di sruption or the enzymatic degradation of the cell wall have been described elsewhere}, subject = {Biochemie}, language = {en} } @article{SebaldWild1979, author = {Sebald, Walter and Wild, G.}, title = {Mitochondrial ATPase complex from Neurospora crassa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82065}, year = {1979}, abstract = {The A TPase eomplex has been isolated from mitoehondria of N eurospora crassa by immunologieal teehniques. The protein ean be obtained rapidly and qua ntitatively in high purity by miero- or large-seale immunopreeipitation. Immunopreeipitation has been applied to labeled and doubly labeled mitoehondrial proteins in order to investigate the number and moleeular weights of subunit polypeptides , the site of synthesis of subunit polypeptides, and the dieycIohexyIcarbodiimide-binding protein . The A TPase complex obtained by large-seale immunopreeipitation has been used as starting ma terial for the isolation of hydrophobie polypeptides.}, subject = {Biochemie}, language = {en} } @article{SebaldWernerWeiss1979, author = {Sebald, Walter and Werner, S and Weiss, H}, title = {Biogenesis of mitochondrial membrane proteins in Neurospora crassa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82055}, year = {1979}, abstract = {no abstract available}, subject = {Biochemie}, language = {en} } @article{WernerSebald1981, author = {Werner, S. and Sebald, Werner}, title = {Immunological techniques for studies on the biogenesis of mitochondrial membrane proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82044}, year = {1981}, abstract = {no abstract available}, subject = {Biochemie}, language = {en} } @article{SchaeferWeibelDonatetal.2012, author = {Sch{\"a}fer, Simon and Weibel, Stephanie and Donat, Ulrike and Zhang, Qian and Aguilar, Richard J. and Chen, Nanhai G. and Szalay, Aladar A.}, title = {Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78220}, year = {2012}, abstract = {Background: Oncolytic viruses, including vaccinia virus (VACV), are a promising alternative to classical mono-cancer treatment methods such as surgery, chemo- or radiotherapy. However, combined therapeutic modalities may be more effective than mono-therapies. In this study, we enhanced the effectiveness of oncolytic virotherapy by matrix metalloproteinase (MMP-9)-mediated degradation of proteins of the tumoral extracellular matrix (ECM), leading to increased viral distribution within the tumors. Methods: For this study, the oncolytic vaccinia virus GLV-1h255, containing the mmp-9 gene, was constructed and used to treat PC-3 tumor-bearing mice, achieving an intra-tumoral over-expression of MMP-9. The intra-tumoral MMP-9 content was quantified by immunohistochemistry in tumor sections. Therapeutic efficacy of GLV-1h255 was evaluated by monitoring tumor growth kinetics and intra-tumoral virus titers. Microenvironmental changes mediated by the intra-tumoral MMP-9 over-expression were investigated by microscopic quantification of the collagen IV content, the blood vessel density (BVD) and the analysis of lymph node metastasis formation. Results: GLV-1h255-treatment of PC-3 tumors led to a significant over-expression of intra-tumoral MMP-9, accompanied by a marked decrease in collagen IV content in infected tumor areas, when compared to GLV-1h68-infected tumor areas. This led to considerably elevated virus titers in GLV-1h255 infected tumors, and to enhanced tumor regression. The analysis of the BVD, as well as the lumbar and renal lymph node volumes, revealed lower BVD and significantly smaller lymph nodes in both GLV-1h68- and GLV-1h255- injected mice compared to those injected with PBS, indicating that MMP-9 over-expression does not alter the metastasis-reducing effect of oncolytic VACV. Conclusions: Taken together, these results indicate that a GLV-1h255-mediated intra-tumoral over-expression of MMP-9 leads to a degradation of collagen IV, facilitating intra-tumoral viral dissemination, and resulting in accelerated tumor regression. We propose that approaches which enhance the oncolytic effect by increasing the intra-tumoral viral load, may be an effective way to improve therapeutic outcome.}, subject = {Biochemie}, language = {en} } @phdthesis{Kober2012, author = {Kober, Franz-Xaver Wilhelm}, title = {Molecular insights into the protein disulfide isomerase family}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72144}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Upon synthesis, nascent polypeptide chains are subject to major rearrangements of their side chains to obtain an energetically more favorable conformation in a process called folding. About one third of all cellular proteins pass through the secretory pathway and undergo oxidative folding in the endoplasmic reticulum (ER). During oxidative folding, the conformational rearrangements are accompanied by the formation of disulfide bonds - covalent bonds between cysteine side chains that form upon oxidation. Protein disulfide isomerase (PDI) assists in the folding of substrates by catalyzing the oxidation of pairs of cysteine residues and the isomerization of disulfide bonds as well as by acting as chaperones. In addition to PDI itself, a family of related ER-resident proteins has formed. All PDI family members share the thioredoxin fold in at least one of their domains and exhibit a subset of the PDI activities. Despite many studies, the role of most PDI family members remains unclear. The project presented in this thesis was aimed to establish tools for the biochemical characterization of single members of the PDI family and their role in the folding process. A combination of fluorescence based assays was developed to selectively study single functions of PDI family members and relate their properties of either catalysis of oxidation or catalysis of isomerization or chaperone activity to the rest of the protein family. A binding assay using isothermal titration calorimetry (ITC) was established to complement the activity assays. Using ITC we could show for the first time that members of the PDI family can distinguish between folded and unfolded proteins selectively binding the latter. The unique information provided by this method also revealed a two-site binding of unfolded proteins by PDI itself. In addition to the functional characterization, experiments were conducted to further investigate the oligomeric state of PDI. We could show that the equilibrium between structurally different states of PDI is heavily influenced by the redox state of the protein and its environment. This new data could help to further our understanding of the interplay between oxidases like PDI and their regenerative enzymes like Ero1, which may be governed by structural changes in response to the change in redox status. Another structural approach was the screening of all investigated PDI family members for suitable crystallization conditions. As a result of this screening we could obtain protein crystals of human ERp27 and were able to solve the structure of this protein with X-ray crystallography. The structure gives insight into the mechanisms of substrate binding domains within the PDI family and helps to understand the interaction of ERp27 with the redox active ERp57. In collaboration with the group of Heike Hermanns we could further show the physiological importance of this interaction under oxidative stress. In conclusion, the project presented in this thesis provides novel tools for an extensive analysis of the activities of single PDI family members as well as a useful set of methods to characterize novel oxidoreductases and chaperones. The initial results obtained with the our novel methods are very promising. At the same time, the structural approach of this project could successfully solve the structure of a PDI family member and give information about the interplay within the PDI family.}, subject = {Biochemie}, language = {en} } @article{SebaldBuecherOlbrichetal.1968, author = {Sebald, Walter and B{\"u}cher, T. and Olbrich, B. and Kaudewitz, F.}, title = {Electrophoretic pattern of and amino acid incorporation in vitro into the insoluble mitochondrial protein of neurospora crassa wild type and mi-1 mutant}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62926}, year = {1968}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{SebaldHofstoetterHackeretal.1969, author = {Sebald, Walter and Hofst{\"o}tter, T. and Hacker, D. and B{\"u}cher, T.}, title = {Incorporation of amino acids into mitochondrial protein of the flight muscle of Locusta migratoria in vitro and in vivo in the presence of cycloheximide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62919}, year = {1969}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} }