@phdthesis{Furth2018, author = {Furth, Sebastian}, title = {Linkable Technical Documentation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174185}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The success of semantic systems has been proven over the last years. Nowadays, Linked Data is the driver for the rapid development of ever new intelligent systems. Especially in enterprise environments semantic systems successfully support more and more business processes. This is especially true for after sales service in the mechanical engineering domain. Here, service technicians need effective access to relevant technical documentation in order to diagnose and solve problems and defects. Therefore, the usage of semantic information retrieval systems has become the new system metaphor. Unlike classical retrieval software Linked Enterprise Data graphs are exploited to grant targeted and problem-oriented access to relevant documents. However, huge parts of legacy technical documents have not yet been integrated into Linked Enterprise Data graphs. Additionally, a plethora of information models for the semantic representation of technical information exists. The semantic maturity of these information models can hardly be measured. This thesis motivates that there is an inherent need for a self-contained semantification approach for technical documents. This work introduces a maturity model that allows to quickly assess existing documentation. Additionally, the approach comprises an abstracting semantic representation for technical documents that is aligned to all major standard information models. The semantic representation combines structural and rhetorical aspects to provide access to so called Core Documentation Entities. A novel and holistic semantification process describes how technical documents in different legacy formats can be transformed to a semantic and linked representation. The practical significance of the semantification approach depends on tools supporting its application. This work presents an accompanying tool chain of semantification applications, especially the semantification framework CAPLAN that is a highly integrated development and runtime environment for semantification processes. The complete semantification approach is evaluated in four real-life projects: in a spare part augmentation project, semantification projects for earth moving technology and harvesting technology, as well as an ontology population project for special purpose vehicles. Three additional case studies underline the broad applicability of the presented ideas.}, subject = {Linked Data}, language = {en} }