@article{VolpatoHolzgrabe2018, author = {Volpato, Daniela and Holzgrabe, Ulrike}, title = {Designing Hybrids Targeting the Cholinergic System by Modulating the Muscarinic and Nicotinic Receptors: A Concept to Treat Alzheimer's Disease}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {12}, issn = {1420-3049}, doi = {10.3390/molecules23123230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197555}, pages = {3230}, year = {2018}, abstract = {The cholinergic hypothesis has been reported first being the cause of memory dysfunction in the Alzheimer's disease. Researchers around the globe have focused their attention on understanding the mechanisms of how this complicated system contributes to processes such as learning, memory, disorientation, linguistic problems, and behavioral issues in the indicated chronic neurodegenerative disease. The present review reports recent updates in hybrid molecule design as a strategy for selectively addressing multiple target proteins involved in Alzheimer's disease (AD) and the study of their therapeutic relevance. The rationale and the design of the bifunctional compounds will be discussed in order to understand their potential as tools to investigate the role of the cholinergic system in AD.}, language = {en} } @article{SunOrtegaTanetal.2018, author = {Sun, Ping and Ortega, Gabriela and Tan, Yan and Hua, Qian and Riederer, Peter F. and Deckert, J{\"u}rgen and Schmitt-B{\"o}hrer, Angelika G.}, title = {Streptozotocin impairs proliferation and differentiation of adult hippocampal neural stem cells in vitro-correlation with alterations in the expression of proteins associated with the insulin system}, series = {Frontiers in Aging Neuroscience}, volume = {10}, journal = {Frontiers in Aging Neuroscience}, number = {145}, doi = {10.3389/fnagi.2018.00145}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176741}, year = {2018}, abstract = {Rats intracerebroventricularily (icv) treated with streptozotocin (STZ), shown to generate an insulin resistant brain state, were used as an animal model for the sporadic form of Alzheimer's disease (sAD). Previously, we showed in an in vivo study that 3 months after STZ icv treatment hippocampal adult neurogenesis (AN) is impaired. In the present study, we examined the effects of STZ on isolated adult hippocampal neural stem cells (NSCs) using an in vitro approach. We revealed that 2.5 mM STZ inhibits the proliferation of NSCs as indicated by reduced number and size of neurospheres as well as by less BrdU-immunoreactive NSCs. Double immunofluorescence stainings of NSCs already being triggered to start with their differentiation showed that STZ primarily impairs the generation of new neurons, but not of astrocytes. For revealing mechanisms possibly involved in mediating STZ effects we analyzed expression levels of insulin/glucose system-related molecules such as the glucose transporter (GLUT) 1 and 3, the insulin receptor (IR) and the insulin-like growth factor (IGF) 1 receptor. Applying quantitative Real time-PCR (qRT-PCR) and immunofluorescence stainings we showed that STZ exerts its strongest effects on GLUT3 expression, as GLUT3 mRNA levels were found to be reduced in NSCs, and less GLUT3-immunoreactive NSCs as well as differentiating cells were detected after STZ treatment. These findings suggest that cultured NSCs are a good model for developing new strategies to treat nerve cell loss in AD and other degenerative disorders.}, language = {en} }