@phdthesis{Mao2018, author = {Mao, Lujia}, title = {Transition Metal-Catalyzed Construction of Benzyl/Allyl sp\(^3\) and Vinyl/Allenyl sp\(^2\) C-B Bonds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154022}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Organoboron compounds, such as benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates, have been synthesized via metal-catalyzed borylations of sp3 C-O and C-H bonds. Thus, Cu-catalyzed borylations of alcohols and their derivatives provide benzyl-, allyl-, allenyl-, vinyl-, and 2-boryl allyl-boronates via nucleophilic substitution. The employment of Ti(OiPr)4 turns the OH moiety into a good leaving group ('OTi'). The products of Pd-catalyzed oxidative borylations of allylic C-H bonds of alkenes were isolated and purified, and their application in the one-pot synthesis of stereodefined homoallyl alcohols was also investigated. Chapter 2 presents a copper-catalyzed synthesis of benzyl-, allyl-, and allenyl-boronates from benzylic, allylic, and propargylic alcohols, respectively, employing a commercially available catalyst precursor, [Cu(CH3CN)4]2+[BF4-]2, and Xantphos as the ligand. The borylation of benzylic alcohols was carried out at 100 oC with 5-10 mol \% [Cu(CH3CN)4]2+[BF4-]2, which afforded benzylic boronates in 32\%-95\% yields. With 10 mol \% [Cu(CH3CN)4]2+[BF4-]2, allylic boronates were provided in 53\%-89\% yields from the borylation of allylic alcohols at 60 or 100 oC. Secondary allylboronates were prepared in 72\%-84\% yields from the borylation of primary allylic alcohols, which also suggests that a nucleophilic substitution pathway is involved in this reaction. Allenylboronates were also synthesized in 72\%-89\% yields from the borylation of propargylic alcohols at 40 or 60 oC. This methodology can be extended to borylation of benzylic and allylic acetates. This protocol exhibits broad reaction scope (40 examples) and high efficiency (up to 95\% yield) under mild conditions, including the preparation of secondary allylic boronates. Preliminary mechanistic studies suggest that nucleophilic substitution is involved in this reaction. Chapter 3 reports an efficient methodology for the synthesis of vinyl-, allyl-, and (E)-2-boryl allylboronates from propargylic alcohols via copper-catalyzed borylation reactions under mild conditions. In the presence of a commercially available catalyst precursor (Cu(OAc)2 or Cu(acac)2) and ligand (Xantphos), the reaction affords the desired products in up to 92\% yield with a broad substrate scope (43 examples). Vinylboronates were synthesized in 50\%-83\% yields via Cu-catalyzed hydroboration of mono-substituted propargylic alcohols. With 1,1-disubstituted propargylic alcohols as the starting materials and Cu(OAc)2 as the catalyst precursor, a variety of allylboronates were synthesized in 44\%-83\% yields. The (E)-2-boryl allylboronates were synthesized in 54\%-92\% yields via the Cu-catalyzed diboration of propargylic alcohols. The stereoselectivity is different from the Pd(dba)2-catalyzed diboration of allenes that provided (Z)-2-boryl allylboronates predominantly. The isolation of an allenyl boronate as the reaction intermediate suggests that an SN2'-type reaction, followed by borylcupration, is involved in the mechanism of the diboration of propargylic alcohols. In chapter 4, a Pd-catalyzed allylic C-H borylation of alkenes is reported. The transformation exhibits high regioselectivity with a variety of linear alkenes, employing a Pd-pincer complex as the catalyst precursor, and the allylic boronate products were isolated and purified. This protocol can also be extended to one-pot carbonyl allylation reactions to provide homoallyl alcohols efficiently. An interesting mechanistic feature is that the reaction proceeds via a Pd(II)/Pd(IV) catalytic cycle. Formation of the Pd(IV) intermediate occurs by a unique combination of an NCNpincer complex and application of F-TEDA-BF4 as the oxidant. An important novelty of the present C-H borylation reaction is that all allyl-Bpin products can be isolated with usually high yields. This is probably a consequence of the application of the NCN-pincer complex as catalyst, which selectively catalyzes C-B bond formation avoiding subsequent C-B bond cleavage based side-reactions}, subject = {{\"U}bergangsmetall}, language = {en} }