@phdthesis{Baur2019, author = {Baur, Florentin Philipp}, title = {Establishment of a 3D tumour model and targeted therapy of BRAF-mutant colorectal cancer}, doi = {10.25972/OPUS-17412}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174129}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Cancer remains after cardiovascular diseases the leading cause of death worldwide and an estimated 8.2 million people died of it in 2012. By 2030, 13 million cancer deaths are expected due to the growth and ageing of the population. Hereof, colorectal cancer (CRC) is the third most common cancer in men and the second in women with a wide geographical variation across the world. Usually, CRC begins as a non-cancerous growth leading to an adenomatous polyp, or adenoma, arising from glandular cells. Since research has brought about better understanding of the mechanisms of cancer development, novel treatments such as targeted therapy have emerged in the past decades. Despite that, up to 95\% of anticancer drugs tested in clinical phase I trials do not attain a market authorisation and hence these high attrition rates remain a key challenge for the pharmaceutical industry, making drug development processes enormously costly and inefficient. Therefore, new preclinical in vitro models which can predict drug responses in vivo more precisely are urgently needed. Tissue engineering not only provides the possibility of creating artificial three-dimensional (3D) in vitro tissues, such as functional organs, but also enables the investigation of drug responses in pathological tissue models, that is, in 3D cancer models which are superior to conventional two-dimensional (2D) cell cultures on petri dishes and can overcome the limitations of animal models, thereby reducing the need for preclinical in vivo models. In this thesis, novel 3D CRC models on the basis of a decellularised intestinal matrix were established. In the first part, it could be shown that the cell line SW480 exhibited different characteristics when grown in a 3D environment from those in conventional 2D culture. While the cells showed a mesenchymal phenotype in 2D culture, they displayed a more pronounced epithelial character in the 3D model. By adding stromal cells (fibroblasts), the cancer cells changed their growth pattern and built tumour-like structures together with the fibroblasts, thereby remodelling the natural mucosal structures of the scaffold. Additionally, the established 3D tumour model was used as a test system for treatment with standard chemotherapeutic 5-fluorouracil (5-FU). The second part of the thesis focused on the establishment of a 3D in vitro test system for targeted therapy. The US Food and Drug Administration has already approved of a number of drugs for targeted therapy of specific types of cancer. For instance, the small molecule vemurafenib (PLX4032, Zelboraf™) which demonstrated impressive response rates of 50-80\% in melanoma patients with a mutation of the rapidly accelerated fibrosarcoma oncogene type B (BRAF) kinase which belongs to the mitogen active protein kinase (MAPK) signalling pathway. However, only 5\% of CRC patients harbouring the same BRAF mutation respond to treatment with vemurafenib. An explanation for this unresponsiveness could be a feedback activation of the upstream EGFR, reactivating the MAPK pathway which sustains a proliferative signalling. To test this hypothesis, the two early passage cell lines HROC24 and HROC87, both presenting the mutation BRAF V600E but differing in other mutations, were used and their drug response to vemurafenib and/or gefitinib was assessed in conventional 2D cell culture and compared to the more advanced 3D model. Under 3D culture conditions, both cell lines showed a reduction of the proliferation rate only in the combination therapy approach. Furthermore, no significant differences between the various treatment approaches and the untreated control regarding apoptosis rate and viability for both cell lines could be found in the 3D tumour model which conferred an enhanced chemoresistance to the cancer cells. Because of the observed unresponsiveness to BRAF inhibition by vemurafenib as can be seen in the clinic for patients with BRAF mutations in CRC, the cell line HROC87 was used for further xenografting experiments and analysis of activation changes in the MAPK signalling pathway. It could be shown that the cells presented a reactivation of Akt in the 3D model when treated with both inhibitors, suggesting an escape mechanism for apoptosis which was not present in cells cultured under conventional 2D conditions. Moreover, the cells exhibited an activation of the hepatocyte growth factor receptor (HGFR, c-Met) in 2D and 3D culture, but this was not detectable in the xenograft model. This shows the limitations of in vivo models. The results suggest another feedback activation loop than that to the EGFR which might not primarily be involved in the resistance mechanism. This reflects the before mentioned high attrition rates in the preclinical drug testing.}, subject = {Dickdarmtumor}, language = {en} } @phdthesis{ALHijailan2019, author = {AL-Hijailan, Reem Saud}, title = {Establishment of endothelialized cardiac tissue using human induced pluripotent stem cells generated cardiomyocytes}, doi = {10.25972/OPUS-17397}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173979}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Cardiovascular diseases are considered the leading cause of death worldwide according to the World Health Organization. Heart failure is the last stage of most of these diseases, where loss of myocardium leads to architectural and functional decline. The definitive treatment option for patients with CVDs is organ or tissue transplantation, which relies on donor availability. Therefore, generating an autologous bioengineered myocardium or heart could overcome this limitation. In addition, generating cardiac patches will provide ventricular wall support and enable reparative stem cells delivery to damaged areas. Although many hurdles still exist, a good number of researches have attempted to create an engineered cardiac tissue which can induce endogenous cardiac repair by replacing damaged myocardium. The present study provided cardiac patches in two models, one by a detergent coronary perfusion decellularization protocol that was optimized, and the other that resulted in a 3D cell-free extracellular matrix with intact architecture and preserved s-glycosaminoglycan and vasculature conduits. Perfusion with 1\% Sodium dodecyle sulfate (SDS) under constant pressure resulted in cell-free porcine scaffold within two and cell-free rat scaffold in 7 days, whereas scaffold perfused with 4\% sodium deoxycholate (SDO) was not able to remove cells completely. Re-reendothelialization of tissue vasculature was obtained by injecting human microvascular endothelial cell and human fibroblast in 2:1 ratio in a dynamic culture. One-week later, CD31 positive cells and endothelium markers were observed, indicating new blood lining. Moreover, functionality test of re-endothelialized tissue revealed improvement in clotting seen in decellularized tissues. When the tissue was ready to be repopulated, porcine induced pluripotent stem cells (PiPSc) were generated by transfected reprogramming of porcine skin fibroblast and then differentiated to cardiac cells following a robust protocol, for an autologous cardiac tissue model. However, due to the limitation in the PiPSc cell number, alternatively, human induced pluripotent stem cells generated cardiac cells were used. For reseeding a coculture of human iPSc generated cardiac cells, human mesenchymal stem cells and human fibroblast in 2:1:1 ratio respectively were used in a dynamic culture for 6-8 weeks. Contractions at different areas of the tissue were recorded at an average beating rate of 67 beats/min. In addition, positive cardiac markers (Troponin T), Fibroblast (vemintin), and mesenchymal stem cells (CD90) were detected. Not only that, but by week 3, MSC started differentiating to cardiac cells progressively until few CD90 positive cells were very few by week 6 with increasing troponin t positive cells in parallel. Electrophysiological and drug studies were difficult to obtain due to tissue thickness and limited assessment sources. However, the same construct was established using small intestine submucosa (SISer) scaffold, which recorded a spontaneous beating rate between 0.88 and 1.2 Hz, a conduction velocity of 23.9 ± 0.74 cm s-1, and a maximal contraction force of 0.453 ± 0.015 mN. Moreover, electrophysiological studies demonstrated a drug-dependent response on beating rate; a higher adrenalin frequency was revealed in comparison to the untreated tissue and isoproterenol administration, whereas a decrease in beating rate was observed with propranolol and untreated tissue. The present study demonstrated the establishment of vascularized cardiac tissue, which can be used for human clinical application.}, language = {en} } @phdthesis{Nelke2019, author = {Nelke, Lena}, title = {Establishment and optimization of 3-dimensional mamma carcinoma models for therapy simulation and drug testing}, doi = {10.25972/OPUS-17228}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172280}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Breast cancer is the most common cancer among women worldwide and the second most common cause of cancer death in the developed countries. As the current state of the art in first-line drug screenings is highly ineffective, there is an urgent need for novel test systems that allow for reliable predictions of drug sensitivity. In this study, a tissue engineering approach was used to successfully establish and standardize a 3-dimensional (3D) mamma carcinoma test system that was optimized for the testing of anti-tumour therapies as well as for the investigation of tumour biological issues. This 3D test system is based on the decellularised scaffold of a porcine small intestinal segment and represents the three molecular subsets of oestrogen receptor-positive, HER2/Neu-overexpressing and triple negative breast cancer (TNBC). The characterization of the test system with respect to morphology as well as the expression of markers for epithelial-mesenchymal transition (EMT) and differentiation indicate that the 3D tumour models cultured under static and dynamic conditions reflect tumour relevant features and have a good correlation with in vivo tumour tissue from the corresponding xenograft models. In this respect, the dynamic culture in a flow bioreactor resulted in the generation of tumour models that exhibited best reflection of the morphology of the xenograft material. Furthermore, the proliferation indices of 3D models were significantly reduced compared to 2-dimensional (2D) cell culture and therefore better reflect the in vivo situation. As this more physiological proliferation index prevents an overestimation of the therapeutic effect of cytostatic compounds, this is a crucial advantage of the test system compared to 2D culture. Moreover, it could be shown that the 3D models can recapitulate different tumour stages with respect to tumour cell invasion. The scaffold SISmuc with the preserved basement membrane structure allowed the investigation of invasion over this barrier which tumour cells of epithelial origin have to cross in in vivo conditions during the process of metastasis formation. Additionally, the data obtained from ultrastructural analysis and in situ zymography indicate that the invasion observed is connected to a tumour cell-associated change in the basement membrane in which matrix metalloproteinases (MMPs) are also involved. This features of the model in combination with the mentioned methods of analysis could be used in the future to mechanistically investigate invasive processes and to test anti-metastatic therapy strategies. The validation of the 3D models as a test system with respect to the predictability of therapeutic effects was achieved by the clinically relevant targeted therapy with the monoclonal antibody trastuzumab which induces therapeutic response only in patients with HER2/Neu-overexpressing mamma carcinomas due to its specificity for HER2. While neither in 2D nor in 3D models of all molecular subsets a clear reduction of cell viability or an increase in apoptosis could be observed, a distinct increase in antibody-dependent cell-mediated cytotoxicity (ADCC) was detected only in the HER2/NEU-overexpressing 3D model with the help of an ADCC reporter gene assay that had been adapted for the application in the 3D model in the here presented work. This correlates with the clinical observations and underlines the relevance of ADCC as a mechanism of action (MOA) of trastuzumab. In order to measure the effects of ADCC on the tumour cells in a direct way without the indirect measurement via a reporter gene, the introduction of an immunological component into the models was required. This was achieved by the integration of peripheral blood mononuclear cells (PBMCs), thereby allowing the measurement of the induction of tumour cell apoptosis in the HER2/Neu-overexpressing model. Hence, in this study an immunocompetent model could be established that holds the potential for further testing of therapies from the emergent field of cancer immunotherapies. Subsequently, the established test system was used for the investigation of scientific issues from different areas of application. By the comparison of the sensitivity of the 2D and 3D model of TNBC towards the water-insoluble compound curcumin that was applied in a novel nanoformulation or in a DMSO-based formulation, the 3D test system was successfully applied for the evaluation of an innovative formulation strategy for poorly soluble drugs in order to achieve cancer therapy-relevant concentrations. Moreover, due to the lack of targeted therapies for TNBC, the TNBC model was applied for testing novel treatment strategies. On the one hand, therapy with the WEE1 kinase inhibitor MK 1775 was evaluated as a single agent as well as in combination with the chemotherapeutic agent doxorubicin. This therapy approach did not reveal any distinct benefits in the 3D test system in contrast to testing in 2D culture. On the other hand, a novel therapy approach from the field of cellular immunotherapies was successfully applied in the TNBC 3D model. The treatment with T cells that express a chimeric antigen receptor (CAR) against ROR1 revealed in the static as well as in the dynamic model a migration of T cells into the tumour tissue, an enhanced proliferation of T cells as well as an efficient lysis of the tumour cells via apoptosis and therefore a specific anti-cancer effect of CAR-transduced T cells compared to control T cells. These results illustrate that the therapeutic application of CAR T cells is a promising strategy for the treatment of solid tumours like TNBC and that the here presented 3D models are suitable for the evaluation and optimization of cellular immunotherapies. In the last part of this work, the 3D models were expanded by components of the tumour stroma for future applications. By coculture with fibroblasts, the natural structures of the intestinal scaffold comprising crypts and villi were remodelled and the tumour cells formed tumour-like structures together with the fibroblasts. This tissue model displayed a strong correlation with xenograft models with respect to morphology, marker expression as well as the activation of dermal fibroblasts towards a cancer-associated fibroblast (CAF) phenotype. For the integration of adipocytes which are an essential component of the breast stroma, a coculture with human adipose-derived stromal/stem cells (hASCs) which could be successfully differentiated along the adipose lineage in 3D static as well as dynamic models was established. These models are suitable especially for the mechanistic analysis of the reciprocal interaction between tumour cells and adipocytes due to the complex differentiation process. Taken together, in this study a human 3D mamma carcinoma test system for application in the preclinical development and testing of anti-tumour therapies as well as in basic research in the field of tumour biology was successfully established. With the help of this modular test system, relevant data can be obtained concerning the efficacy of therapies in tumours of different molecular subsets and different tumour stages as well as for the optimization of novel therapy strategies like immunotherapies. In the future this can contribute to improve the preclinical screening and thereby to reduce the high attrition rates in pharmaceutical industry as well as the amount of animal experiments.}, subject = {Brustkrebs}, language = {en} } @phdthesis{Ruecker2019, author = {R{\"u}cker, Christoph}, title = {Development of a prevascularized bone implant}, doi = {10.25972/OPUS-17886}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178869}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The skeletal system forms the mechanical structure of the body and consists of bone, which is hard connective tissue. The tasks the skeleton and bones take over are of mechanical, metabolic and synthetic nature. Lastly, bones enable the production of blood cells by housing the bone marrow. Bone has a scarless self-healing capacity to a certain degree. Injuries exceeding this capacity caused by trauma, surgical removal of infected or tumoral bone or as a result from treatment-related osteonecrosis, will not heal. Critical size bone defects that will not heal by themselves are still object of comprehensive clinical investigation. The conventional treatments often result in therapies including burdening methods as for example the harvesting of autologous bone material. The aim of this thesis was the creation of a prevascularized bone implant employing minimally invasive methods in order to minimize inconvenience for patients and surgical site morbidity. The basis for the implant was a decellularized, naturally derived vascular scaffold (BioVaSc-TERM®) providing functional vessel structures after reseeding with autologous endothelial cells. The bone compartment was built by the combination of the aforementioned scaffold with synthetic β-tricalcium phosphate. In vitro culture for tissue maturation was performed using bioreactor technology before the testing of the regenerative potential of the implant in large animal experiments in sheep. A tibia defect was treated without the anastomosis of the implant's innate vasculature to the host's circulatory system and in a second study, with anastomosis of the vessel system in a mandibular defect. While the non-anastomosed implant revealed a mostly osteoconductive effect, the implants that were anastomosed achieved formation of bony islands evenly distributed over the defect. In order to prepare preconditions for a rapid approval of an implant making use of this vascularization strategy, the manufacturing of the BioVaSc-TERM® as vascularizing scaffold was adjusted to GMP requirements.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Kress2019, author = {Kreß, Sebastian}, title = {Development and proof of concept of a biological vascularized cell-based drug delivery system}, doi = {10.25972/OPUS-17865}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {A major therapeutic challenge is the increasing incidence of chronic disorders. The persistent impairment or loss of tissue function requires constitutive on-demand drug availability optimally achieved by a drug delivery system ideally directly connected to the blood circulation of the patient. However, despite the efforts and achievements in cell-based therapies and the generation of complex and customized cell-specific microenvironments, the generation of functional tissue is still unaccomplished. This study demonstrates the capability to generate a vascularized platform technology to potentially overcome the supply restraints for graft development and clinical application with immediate anastomosis to the blood circulation. The ability to decellularize segments of the rat intestine while preserving the ECM for subsequent reendothelialization was proven. The reestablishment of a functional arteriovenous perfusion circuit enabled the supply of co-cultured cells capable to replace the function of damaged tissue or to serve as a drug delivery system. During in vitro studies, the applicability of the developed miniaturized biological vascularized scaffold (mBioVaSc-TERM®) was demonstrated. While indicating promising results in short term in vivo studies, long term implantations revealed current limitations for the translation into clinical application. The gained insights will impact further improvements of quality and performance of this promising platform technology for future regenerative therapies.}, subject = {Vaskularisation}, language = {en} }