@phdthesis{Schnells2019, author = {Schnells, Vera}, title = {Fractional Insulators and their Parent Hamiltonians}, doi = {10.25972/OPUS-18561}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In the past few years, two-dimensional quantum liquids with fractional excitations have been a topic of high interest due to their possible application in the emerging field of quantum computation and cryptography. This thesis is devoted to a deeper understanding of known and new fractional quantum Hall states and their stabilization in local models. We pursue two different paths, namely chiral spin liquids and fractionally quantized, topological phases. The chiral spin liquid is one of the few examples of spin liquids with fractional statistics. Despite its numerous promising properties, the microscopic models for this state proposed so far are all based on non-local interactions, making the experimental realization challenging. In the first part of this thesis, we present the first local parent Hamiltonians, for which the Abelian and non-Abelian chiral spin liquids are the exact and, modulo a topological degeneracy, unique ground states. We have developed a systematic approach to find an annihilation operator of the chiral spin liquid and construct from it a many-body interaction which establishes locality. For various system sizes and lattice geometries, we numerically find largely gapped eigenspectra and confirm to an accuracy of machine precision the uniqueness of the chiral spin liquid as ground state of the respective system. Our results provide an exact spin model in which fractional quantization can be studied. Topological insulators are one of the most actively studied topics in current condensed matter physics research. With the discovery of the topological insulator, one question emerged: Is there an interaction-driven set of fractionalized phases with time reversal symmetry? One intuitive approach to the theoretical construction of such a fractional topological insulator is to take the direct product of a fractional quantum Hall state and its time reversal conjugate. However, such states are well studied conceptually and do not lead to new physics, as the idea of taking a state and its mirror image together without any entanglement between the states has been well understood in the context of topological insulators. Therefore, the community has been looking for ways to implement some topological interlocking between different spin species. Yet, for all practical purposes so far, time reversal symmetry has appeared to limit the set of possible fractional states to those with no interlocking between the two spin species. In the second part of this thesis, we propose a new universality class of fractionally quantized, topologically ordered insulators, which we name "fractional insulator". Inspired by the fractional quantum Hall effect, spin liquids, and fractional Chern insulators, we develop a wave function approach to a new class of topological order in a two-dimensional crystal of spin-orbit coupled electrons. The idea is simply to allow the topological order to violate time reversal symmetry, while all locally observable quantities remain time reversal invariant. We refer to this situation as "topological time reversal symmetry breaking". Our state is based on the Halperin double layer states and can be viewed as a two-layer system of an ↑-spin and a ↓-spin sphere. The construction starts off with Laughlin states for the ↑-spin and ↓-spin electrons and an interflavor term, which creates correlations between the two layers. With a careful parameter choice, we obtain a state preserving time reversal symmetry locally, and label it the "311-state". For systems of up to six ↑-spin and six ↓-spin electrons, we manage to construct an approximate parent Hamiltonian with a physically realistic, local interaction.}, subject = {Spinfl{\"u}ssigkeit}, language = {en} } @phdthesis{Juergens2017, author = {J{\"u}rgens, Stefan}, title = {Correlated Topological Materials}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152202}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The topic of this PhD thesis is the combination of topologically non-trivial phases with correlation effects stemming from Coulomb interaction between the electrons in a condensed matter system. Emphasis is put on both emerging benefits as well as hindrances, e.g. concerning the topological protection in the presence of strong interactions. The physics related to topological effects is established in Sec. 2. Based on the topological band theory, we introduce topological materials including Chern insulators, topological insulators in two and three dimensions as well as Weyl semimetals. Formalisms for a controlled treatment of Coulomb correlations are presented in Sec. 3, starting with the topological field theory. The Random Phase Approximation is introduced as a perturbative approach, while in the strongly interacting limit the theory of quantum Hall ferromagnetism applies. Interactions in one dimension are special, and are treated through the Luttinger liquid description. The section ends with an overview of the expected benefits offered by the combination of topology and interactions, see Sec. 3.3. These ideas are then elaborated in the research part. In Chap. II, we consider weakly interacting 2D topological insulators, described by the Bernevig-Hughes-Zhang model. This is applicable, e.g., to quantum well structures made of HgTe/CdTe or InAs/GaSb. The bulk band structure is here a mixture stemming from linear Dirac and quadratic Schr{\"o}dinger fermions. We study the low-energy excitations in Random Phase Approximation, where a new interband plasmon emerges due to the combined Dirac and Schr{\"o}dinger physics, which is absent in the separate limits. Already present in the undoped limit, one finds it also at finite doping, where it competes with the usual intraband plasmon. The broken particle-hole symmetry in HgTe quantum wells allows for an effective separation of the two in the excitation spectrum for experimentally accessible parameters, in the right range for Raman or electron loss spectroscopy. The interacting bulk excitation spectrum shows here clear differences between the topologically trivial and topologically non-trivial regime. An even stronger signal in experiments is expected from the optical conductivity of the system. It thus offers a quantitative way to identify the topological phase of 2D topological insulators from a bulk measurement. In Chap. III, we study a strongly interacting system, forming an ordered, quantum Hall ferromagnetic state. The latter can arise also in weakly interacting materials with an applied strong magnetic field. Here, electrons form flat Landau levels, quenching the kinetic energy such that Coulomb interaction can be dominant. These systems define the class of quantum Hall topological insulators: topologically non-trivial states at finite magnetic field, where the counter-propagating edge states are protected by a symmetry (spatial or spin) other than time-reversal. Possible material realizations are 2D topological insulators like HgTe heterostructures and graphene. In our analysis, we focus on the vicinity of the topological phase transition, where the system is in a strongly interacting quantum Hall ferromagnetic state. The bulk and edge physics can be described by a nonlinear \sigma-model for the collective order parameter of the ordered state. We find that an emerging, continuous U(1) symmetry offers topological protection. If this U(1) symmetry is preserved, the topologically non-trivial phase persists in the presence of interactions, and we find a helical Luttinger liquid at the edge. The latter is highly tunable by the magnetic field, where the effective interaction strength varies from weakly interacting at zero field, K \approx 1, to diverging interaction strength at the phase transition, K -> 0. In the last Chap. IV, we investigate whether a Weyl semimetal and a 3D topological insulator phase can exist together at the same time, with a combined, hybrid surface state at the joint boundaries. An overlap between the two can be realized by Coulomb interaction or a spatial band overlap of the two systems. A tunnel coupling approach allows us to derive the hybrid surface state Hamiltonian analytically, enabling a detailed study of its dispersion relation. For spin-symmetric coupling, new Dirac nodes emerge out of the combination of a single Dirac node and a Fermi arc. Breaking the spin symmetry through the coupling, the dispersion relation is gapped and the former Dirac node gets spin-polarized. We propose experimental realizations of the hybrid physics, including compressively strained HgTe as well as heterostructures of topological insulator and Weyl semimetal materials, connected to each other, e.g., by Coulomb interaction.}, subject = {Topologie}, language = {en} }