@article{BlancoKuchenbaeckerCuadrasetal.2015, author = {Blanco, Ignacio and Kuchenbaecker, Karoline and Cuadras, Daniel and Wang, Xianshu and Barrowdale, Daniel and Ruiz de Garibay, Gorka and Librado, Pablo and Sanchez-Gracia, Alejandro and Rozas, Julio and Bonifaci, N{\´u}ria and McGuffog, Lesley and Pankratz, Vernon S. and Islam, Abul and Mateo, Francesca and Berenguer, Antoni and Petit, Anna and Catal{\`a}, Isabel and Brunet, Joan and Feliubadal{\´o}, Lidia and Tornero, Eva and Ben{\´i}tez, Javier and Osorio, Ana and Ram{\´o}n y Cajal, Teresa and Nevanlinna, Heli and Aittom{\"a}ki, Kristina and Arun, Banu K. and Toland, Amanda E. and Karlan, Beth Y. and Walsh, Christine and Lester, Jenny and Greene, Mark H. and Mai, Phuong L. and Nussbaum, Robert L. and Andrulis, Irene L. and Domchek, Susan M. and Nathanson, Katherine L. and Rebbeck, Timothy R. and Barkardottir, Rosa B. and Jakubowska, Anna and Lubinski, Jan and Durda, Katarzyna and Jaworska-Bieniek, Katarzyna and Claes, Kathleen and Van Maerken, Tom and D{\´i}ez, Orland and Hansen, Thomas V. and J{\o}nson, Lars and Gerdes, Anne-Marie and Ejlertsen, Bent and De la Hoya, Miguel and Cald{\´e}s, Trinidad and Dunning, Alison M. and Oliver, Clare and Fineberg, Elena and Cook, Margaret and Peock, Susan and McCann, Emma and Murray, Alex and Jacobs, Chris and Pichert, Gabriella and Lalloo, Fiona and Chu, Carol and Dorkins, Huw and Paterson, Joan and Ong, Kai-Ren and Teixeira, Manuel R. and Hogervorst, Frans B. L. and Van der Hout, Annemarie H. and Seynaeve, Caroline and Van der Luijt, Rob B. and Ligtenberg, Marjolijn J. L. and Devilee, Peter and Wijnen, Juul T. and Rookus, Matti A. and Meijers-Heijboer, Hanne E. J. and Blok, Marinus J. and Van den Ouweland, Ans M. W. and Aalfs, Cora M. and Rodriguez, Gustavo C. and Phillips, Kelly-Anne A. and Piedmonte, Marion and Nerenstone, Stacy R. and Bae-Jump, Victoria L. and O'Malley, David M. and Schmutzler, Rita K. and Wappenschmidt, Barbara and Rhiem, Kerstin and Engel, Christoph and Meindl, Alfons and Ditsch, Nina and Arnold, Norbert and Plendl, Hansjoerg J. and Niederacher, Dieter and Sutter, Christian and Wang-Gohrke, Shan and Steinemann, Doris and Preisler-Adams, Sabine and Kast, Karin and Varon-Mateeva, Raymonda and Gehrig, Andrea and Bojesen, Anders and Pedersen, Inge Sokilde and Sunde, Lone and Birk Jensen, Uffe and Thomassen, Mads and Kruse, Torben A. and Foretova, Lenka and Peterlongo, Paolo and Bernard, Loris and Peissel, Bernard and Scuvera, Giulietta and Manoukian, Siranoush and Radice, Paolo and Ottini, Laura and Montagna, Marco and Agata, Simona and Maugard, Christine and Simard, Jacques and Soucy, Penny and Berger, Andreas and Fink-Retter, Anneliese and Singer, Christian F. and Rappaport, Christine and Geschwantler-Kaulich, Daphne and Tea, Muy-Kheng and Pfeiler, Georg and John, Esther M. and Miron, Alex and Neuhausen, Susan L. and Terry, Mary Beth and Chung, Wendy K. and Daly, Mary B. and Goldgar, David E. and Janavicius, Ramunas and Dorfling, Cecilia M. and Van Rensburg, Elisabeth J. and Fostira, Florentia and Konstantopoulou, Irene and Garber, Judy and Godwin, Andrew K. and Olah, Edith and Narod, Steven A. and Rennert, Gad and Paluch, Shani Shimon and Laitman, Yael and Friedman, Eitan and Liljegren, Annelie and Rantala, Johanna and Stenmark-Askmalm, Marie and Loman, Niklas and Imyanitov, Evgeny N. and Hamann, Ute and Spurdle, Amanda B. and Healey, Sue and Weitzel, Jeffrey N. and Herzog, Josef and Margileth, David and Gorrini, Chiara and Esteller, Manel and G{\´o}mez, Antonio and Sayols, Sergi and Vidal, Enrique and Heyn, Holger and Stoppa-Lyonnet, Dominique and L{\´e}on{\´e}, Melanie and Barjhoux, Laure and Fassy-Colcombet, Marion and Pauw, Antoine de and Lasset, Christine and Fert Ferrer, Sandra and Castera, Laurent and Berthet, Pascaline and Cornelis, Fran{\c{c}}ois and Bignon, Yves-Jean and Damiola, Francesca and Mazoyer, Sylvie and Sinilnikova, Olga M. and Maxwell, Christopher A. and Vijai, Joseph and Robson, Mark and Kauff, Noah and Corines, Marina J. and Villano, Danylko and Cunningham, Julie and Lee, Adam and Lindor, Noralane and L{\´a}zaro, Conxi and Easton, Douglas F. and Offit, Kenneth and Chenevix-Trench, Georgia and Couch, Fergus J. and Antoniou, Antonis C. and Pujana, Miguel Angel}, title = {Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0120020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143469}, pages = {e0120020}, year = {2015}, abstract = {While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95\% confidence interval (CI) 1.04 - 1.15, p = 1.9 x 10\(^{-4}\) (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95\% CI 1.03 - 1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted p\(_{interaction}\) values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.}, language = {en} } @article{KlaesnerBuchmannGemptetal.2015, author = {Kl{\"a}sner, Benjamin and Buchmann, Niels and Gempt, Jens and Ringel, Florian and Lapa, Constantin and Krause, Bernd Joachim}, title = {Early [\(^{18}\)F]FET-PET in Gliomas after Surgical Resection: Comparison with MRI and Histopathology}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {10}, doi = {10.1371/journal.pone.0141153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139549}, pages = {e0141153}, year = {2015}, abstract = {Background The precise definition of the post-operative resection status in high-grade gliomas (HGG) is crucial for further management. We aimed to assess the feasibility of assessment of the resection status with early post-operative positron emission tomography (PET) using [\(^{18}\)F]O-(2-[\(^{18}\)F]-fluoroethyl)-L-tyrosine ([\(^{18}\)F]FET). Methods 25 patients with the suspicion of primary HGG were enrolled. All patients underwent preoperative [\(^{18}\)F]FET-PET and magnetic resonance imaging (MRI). Intra-operatively, resection status was assessed using 5-aminolevulinic acid (5-ALA). Imaging was repeated within 72h after neurosurgery. Post-operative [\(^{18}\)F]FET-PET was compared with MRI, intra-operative assessment and clinical follow-up. Results [\(^{18}\)F]FET-PET, MRI and intra-operative assessment consistently revealed complete resection in 12/25 (48\%) patients and incomplete resection in 6/25 cases (24\%). In 7 patients, PET revealed discordant findings. One patient was re-resected. 3/7 experienced tumor recurrence, 3/7 died shortly after brain surgery. Conclusion Early assessment of the resection status in HGG with [\(^{18}\)F]FET-PET seems to be feasible.}, language = {en} } @article{HarterBernatzScholzetal.2015, author = {Harter, Patrick N. and Bernatz, Simon and Scholz, Alexander and Zeiner, Pia S. and Zinke, Jenny and Kiyose, Makoto and Blasel, Stella and Beschorner, Rudi and Senft, Christian and Bender, Benjamin and Ronellenfitsch, Michael W. and Wikman, Harriet and Glatzel, Markus and Meinhardt, Matthias and Juratli, Tareq A. and Steinbach, Joachim P. and Plate, Karl H. and Wischhusen, J{\"o}rg and Weide, Benjamin and Mittelbronn, Michel}, title = {Distribution and prognostic relevance of tumor-infiltrating lymphocytes (TILs) and PD-1/PD-L1 immune checkpoints in human brain metastases}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {38}, doi = {10.18632/oncotarget.5696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137107}, pages = {40836 -- 40849}, year = {2015}, abstract = {The activation of immune cells by targeting checkpoint inhibitors showed promising results with increased patient survival in distinct primary cancers. Since only limited data exist for human brain metastases, we aimed at characterizing tumor infiltrating lymphocytes (TILs) and expression of immune checkpoints in the respective tumors. Two brain metastases cohorts, a mixed entity cohort (n = 252) and a breast carcinoma validation cohort (n = 96) were analyzed for CD3+, CD8+, FOXP3+, PD-1+ lymphocytes and PD-L1+ tumor cells by immunohistochemistry. Analyses for association with clinico-epidemiological and neuroradiological parameters such as patient survival or tumor size were performed. TILs infiltrated brain metastases in three different patterns (stromal, peritumoral, diffuse). While carcinomas often show a strong stromal infiltration, TILs in melanomas often diffusely infiltrate the tumors. Highest levels of CD3+ and CD8+ lymphocytes were seen in renal cell carcinomas (RCC) and strongest PD-1 levels on RCCs and melanomas. High amounts of TILs, high ratios of PD-1+/CD8+ cells and high levels of PD-L1 were negatively correlated with brain metastases size, indicating that in smaller brain metastases CD8+ immune response might get blocked. PD-L1 expression strongly correlated with TILs and FOXP3 expression. No significant association of patient survival with TILs was observed, while high levels of PD-L1 showed a strong trend towards better survival in melanoma brain metastases (Log-Rank p = 0.0537). In summary, melanomas and RCCs seem to be the most immunogenic entities. Differences in immunotherapeutic response between tumor entities regarding brain metastases might be attributable to this finding and need further investigation in larger patient cohorts.}, language = {en} } @article{PhilippAbbrederisHerrmannKnopetal.2015, author = {Philipp-Abbrederis, Kathrin and Herrmann, Ken and Knop, Stefan and Schottelius, Margret and Eiber, Matthias and L{\"u}ckerath, Katharina and Pietschmann, Elke and Habringer, Stefan and Gerngroß, Carlos and Franke, Katharina and Rudelius, Martina and Schirbel, Andreas and Lapa, Constantin and Schwamborn, Kristina and Steidle, Sabine and Hartmann, Elena and Rosenwald, Andreas and Kropf, Saskia and Beer, Ambros J and Peschel, Christian and Einsele, Hermann and Buck, Andreas K and Schwaiger, Markus and G{\"o}tze, Katharina and Wester, Hans-J{\"u}rgen and Keller, Ulrich}, title = {In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma}, series = {EMBO Molecular Medicine}, volume = {7}, journal = {EMBO Molecular Medicine}, number = {4}, doi = {10.15252/emmm.201404698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148738}, pages = {477-487}, year = {2015}, abstract = {CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [\(^{68}\)Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [\(^{68}\)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [\(^{68}\)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [\(^{18}\)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34\(^{+}\) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [\(^{68}\)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases.}, language = {en} } @article{PippiasStelDiezetal.2015, author = {Pippias, Maria and Stel, Vianda S. and Diez, Jos{\´e} Maria Abad and Afentakis, Nikolaos and Herrero-Calvo, Jose Antonio and Arias, Manuel and Tomilina, Natalia and Caama{\~n}o, Encarnaci{\´o}n Bouzas and Buturovic-Ponikvar, Jadranka and Čala, Svjetlana and Caskey, Fergus J. and de la Nuez, Pablo Castro and Cernevskis, Harijs and Collart, Frederic and de la Torre, Ram{\´o}n Alonso and de los {\´A}ngeles Garc{\´i}a Bazaga, Maria and De Meester, Johan and D{\´i}az, Joan Manuel and Djukanovic, Ljubica and Alamar, Manuel Ferrer and Finne, Patrik and Garneata, Liliana and Golan, Eliezer and Gonz{\´a}lez Fern{\´a}ndez, Raquel and Guti{\´e}rrez Avila, Gonzalo and Heaf, James and Hoitsma, Andries and Kantaria, Nino and Kolesnyk, Mykola and Kramar, Reinhard and Kramer, Anneke and Lassalle, Mathilde and Leivestad, Torbj{\o}rn and Lopot, Frantisek and Mac{\´a}rio, Fernando and Magaz, Angela and Mart{\´i}n-Escobar, Eduardo and Metcalfe, Wendy and Noordzij, Marlies and Palsson, Runolfur and Pechter, {\"U}lle and Pr{\"u}tz, Karl G. and Ratkovic, Marina and Resić, Halima and Rutkowski, Boleslaw and de Pablos, Carmen Santiuste and Spustov{\´a}, Viera and S{\"u}leymanlar, G{\"u}ltekin and Van Stralen, Karlijn and Thereska, Nestor and Wanner, Christoph and Jager, Kitty J.}, title = {Renal replacement therapy in Europe: a summary of the 2012 ERA-EDTA Registry Annual Report}, series = {Clinical Kidney Journal}, volume = {8}, journal = {Clinical Kidney Journal}, number = {3}, doi = {10.1093/ckj/sfv014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150054}, pages = {248-261}, year = {2015}, abstract = {Background This article summarizes the 2012 European Renal Association—European Dialysis and Transplant Association Registry Annual Report (available at www.era-edta-reg.org) with a specific focus on older patients (defined as ≥65 years). Methods Data provided by 45 national or regional renal registries in 30 countries in Europe and bordering the Mediterranean Sea were used. Individual patient level data were received from 31 renal registries, whereas 14 renal registries contributed data in an aggregated form. The incidence, prevalence and survival probabilities of patients with end-stage renal disease (ESRD) receiving renal replacement therapy (RRT) and renal transplantation rates for 2012 are presented. Results In 2012, the overall unadjusted incidence rate of patients with ESRD receiving RRT was 109.6 per million population (pmp) (n = 69 035), ranging from 219.9 pmp in Portugal to 24.2 pmp in Montenegro. The proportion of incident patients ≥75 years varied from 15 to 44\% between countries. The overall unadjusted prevalence on 31 December 2012 was 716.7 pmp (n = 451 270), ranging from 1670.2 pmp in Portugal to 146.7 pmp in the Ukraine. The proportion of prevalent patients ≥75 years varied from 11 to 32\% between countries. The overall renal transplantation rate in 2012 was 28.3 pmp (n = 15 673), with the highest rate seen in the Spanish region of Catalonia. The proportion of patients ≥65 years receiving a transplant ranged from 0 to 35\%. Five-year adjusted survival for all RRT patients was 59.7\% (95\% confidence interval, CI: 59.3-60.0) which fell to 39.3\% (95\% CI: 38.7-39.9) in patients 65-74 years and 21.3\% (95\% CI: 20.8-21.9) in patients ≥75 years.}, language = {en} }