@article{McCollGrollJungstetal.2018, author = {McColl, Erin and Groll, J{\"u}rgen and Jungst, Tomasz and Dalton, Paul D.}, title = {Design and fabrication of melt electrowritten tubes using intuitive software}, series = {Materials and Design}, volume = {155}, journal = {Materials and Design}, doi = {10.1016/j.matdes.2018.05.036}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223891}, pages = {46-58}, year = {2018}, abstract = {This study approaches the accurate continuous direct-writing onto a cylindrical collector from a mathematical perspective, taking into account the winding angle, cylinder diameter and length required for the final 3D printed tube. Using an additive manufacturing process termed melt electrowriting (MEW), porous tubes intended for tissue engineering applications are fabricated from medical-grade poly(ε-caprolactone) (PCL), validating the mathematically-derived method. For the fabricated tubes in this study, the pore size, winding angle and printed length can all be planned in advance and manufactured as designed. The physical dimensions of the tubes matched theoretical predictions and mechanical testing performed demonstrated that variations in the tubular morphology have a direct impact on their strength. MEWTubes, the web-based application developed and described here, is a particularly useful tool for planning the complex continuous direct writing path required for MEW onto a rotating, cylindrical build surface.}, language = {en} } @article{McMasterHoefnerHrynevichetal.2019, author = {McMaster, Rebecca and Hoefner, Christiane and Hrynevich, Andrei and Blum, Carina and Wiesner, Miriam and Wittmann, Katharina and Dargaville, Tim R. and Bauer-Kreisel, Petra and Groll, J{\"u}rgen and Dalton, Paul D. and Blunk, Torsten}, title = {Tailored Melt Electrowritten Scaffolds for the Generation of Sheet-Like Tissue Constructs from Multicellular Spheroids}, series = {Advanced Healthcare Materials}, volume = {8}, journal = {Advanced Healthcare Materials}, doi = {10.1002/adhm.201801326}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223921}, year = {2019}, abstract = {Melt electrowriting (MEW) is an additive manufacturing technology that is recently used to fabricate voluminous scaffolds for biomedical applications. In this study, MEW is adapted for the seeding of multicellular spheroids, which permits the easy handling as a single sheet-like tissue-scaffold construct. Spheroids are made from adipose-derived stromal cells (ASCs). Poly(ε-caprolactone) is processed via MEW into scaffolds with box-structured pores, readily tailorable to spheroid size, using 13-15 µm diameter fibers. Two 7-8 µm diameter "catching fibers" near the bottom of the scaffold are threaded through each pore (360 and 380 µm) to prevent loss of spheroids during seeding. Cell viability remains high during the two week culture period, while the differentiation of ASCs into the adipogenic lineage is induced. Subsequent sectioning and staining of the spheroid-scaffold construct can be readily performed and accumulated lipid droplets are observed, while upregulation of molecular markers associated with successful differentiation is demonstrated. Tailoring MEW scaffolds with pores allows the simultaneous seeding of high numbers of spheroids at a time into a construct that can be handled in culture and may be readily transferred to other sites for use as implants or tissue models.}, language = {en} } @article{BernhardKrumpholzKriegeretal.2022, author = {Bernhard, Lukas and Krumpholz, Roman and Krieger, Yannick and Czempiel, Tobias and Meining, Alexander and Navab, Nassir and L{\"u}th, Tim and Wilhelm, Dirk}, title = {PLAFOKON: a new concept for a patient-individual and intervention-specific flexible surgical platform}, series = {Surgical Endoscopy}, volume = {36}, journal = {Surgical Endoscopy}, number = {7}, issn = {0930-2794}, doi = {10.1007/s00464-021-08908-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307490}, pages = {5303-5312}, year = {2022}, abstract = {Background Research in the field of surgery is mainly driven by aiming for trauma reduction as well as for personalized treatment concepts. Beyond laparoscopy, other proposed approaches for further reduction of the therapeutic trauma have failed to achieve clinical translation, with few notable exceptions. We believe that this is mainly due to a lack of flexibility and high associated costs. We aimed at addressing these issues by developing a novel minimally invasive operating platform and a preoperative design workflow for patient-individual adaptation and cost-effective rapid manufacturing of surgical manipulators. In this article, we report on the first in-vitro cholecystectomy performed with our operating platform. Methods The single-port overtube (SPOT) is a snake-like surgical manipulator for minimally invasive interventions. The system layout is highly flexible and can be adapted in design and dimensions for different kinds of surgery, based on patient- and disease-specific parameters. For collecting and analyzing this data, we developed a graphical user interface, which assists clinicians during the preoperative planning phase. Other major components of our operating platform include an instrument management system and a non-sterile user interface. For the trial surgery, we used a validated phantom which was further equipped with a porcine liver including the gallbladder. Results Following our envisioned preoperative design workflow, a suitable geometry of the surgical manipulator was determined for our trial surgery and rapidly manufactured by means of 3D printing. With this setup, we successfully performed a first in-vitro cholecystectomy, which was completed in 78 min. Conclusions By conducting the trial surgery, we demonstrated the effectiveness of our PLAFOKON operating platform. While some aspects - especially regarding usability and ergonomics - can be further optimized, the overall performance of the system is highly promising, with sufficient flexibility and strength for conducting the necessary tissue manipulations.}, language = {en} } @article{LudwigReymusWinkleretal.2023, author = {Ludwig, Julia and Reymus, Marcel and Winkler, Alexander and Soliman, Sebastian and Krug, Ralf and Krastl, Gabriel}, title = {Root maturation of an immature dens invaginatus despite unsuccessful revitalization procedure: a case report and recommendations for educational purposes}, series = {Dentistry Journal}, volume = {11}, journal = {Dentistry Journal}, number = {2}, issn = {2304-6767}, doi = {10.3390/dj11020047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304108}, year = {2023}, abstract = {Background: The clinical management of teeth with complex dens invaginatus (DI) malformations and apical periodontitis may be challenging due to the lack of routine. The aim of this case report is to describe the endodontic treatment of an immature tooth with DI and to discuss strategies for preclinical training for teeth with such malformations. Case report: A 9-year-old male presented with an immature maxillary incisor with DI (Oehlers Type II) and apical periodontitis which was diagnosed by cone beam computed tomography (CBCT). Revitalization was initially attempted but then abandoned after failure to generate a stable blood clot. Nevertheless, considerable increase in both root length and thickness could be detected after medication with calcium hydroxide followed by root canal filling with MTA as an apical plug. Conclusions: The endodontic management of teeth with DI requires thorough treatment planning. In immature teeth, under certain conditions, root maturation may occur even with conventional apexification procedures. From an educational perspective, different strategies including CBCT and 3D-printed transparent tooth models for visualization of the complex internal morphology and redesigned 3D-printed replica with various degrees of difficulty for endodontic training, can be used to overcome the challenges associated with endodontic treatment of such teeth.}, language = {en} } @article{SudarevicTroyaFuchsetal.2023, author = {Sudarevic, Boban and Troya, Joel and Fuchs, Karl-Hermann and Hann, Alexander and Vereczkei, Andras and Meining, Alexander}, title = {Design and development of a flexible 3D-printed endoscopic grasping instrument}, series = {Applied Sciences}, volume = {13}, journal = {Applied Sciences}, number = {9}, issn = {2076-3417}, doi = {10.3390/app13095656}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319186}, year = {2023}, abstract = {(1) Background: Interventional endoscopic procedures are growing more popular, requiring innovative instruments and novel techniques. Three-dimensional printing has demonstrated great potential for the rapid development of prototypes that can be used for the early assessment of various concepts. In this work, we present the development of a flexible endoscopic instrument and explore its potential benefits. (2) Methods: The properties of the instrument, such as its maneuverability, flexibility, and bending force, were evaluated in a series of bench tests. Additionally, the effectiveness of the instrument was evaluated in an ex vivo porcine model by medical experts, who graded its properties and performance. Furthermore, the time necessary to complete various interventional endoscopic tasks was recorded. (3) Results: The instrument achieved bending angles of ±216° while achieving a bending force of 7.85 (±0.53) Newtons. The time needed to reach the operating region was 120 s median, while it took 70 s median to insert an object in a cavity. Furthermore, it took 220 s median to insert the instrument and remove an object from the cavity. (4) Conclusions: This study presents the development of a flexible endoscopic instrument using three-dimensional printing technology and its evaluation. The instrument demonstrated high bending angles and forces, and superior properties compared to the current state of the art. Furthermore, it was able to complete various interventional endoscopic tasks in minimal time, thus potentially leading to the improved safety and effectiveness of interventional endoscopic procedures in the future.}, language = {en} } @article{BoehmTandonHrynevichetal.2022, author = {B{\"o}hm, Christoph and Tandon, Biranche and Hrynevich, Andrei and Teßmar, J{\"o}rg and Dalton, Paul D.}, title = {Processing of Poly(lactic-co-glycolic acid) Microfibers via Melt Electrowriting}, series = {Macromolecular Chemistry and Physics}, volume = {223}, journal = {Macromolecular Chemistry and Physics}, number = {5}, doi = {10.1002/macp.202100417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318444}, year = {2022}, abstract = {Polymers sensitive to thermal degradation include poly(lactic-co-glycolic acid) (PLGA), which is not yet processed via melt electrowriting (MEW). After an initial period of instability where mean fiber diameters increase from 20.56 to 27.37 µm in 3.5 h, processing stabilizes through to 24 h. The jet speed, determined using critical translation speed measurements, also reduces slightly in this 3.5 h period from 500 to 433 mm min\(^{-1}\) but generally remains constant. Acetyl triethyl citrate (ATEC) as an additive decreases the glass transition temperature of PLGA from 49 to 4 °C, and the printed ATEC/PLGA fibers exhibits elastomeric behavior upon handling. Fiber bundles tested in cyclic mechanical testing display increased elasticity with increasing ATEC concentration. The processing temperature of PLGA also reduces from 165 to 143 °C with increase in ATEC concentration. This initial window of unstable direct writing seen with neat PLGA can also be impacted through the addition of 10-wt\% ATEC, producing fiber diameters of 14.13 ± 1.69 µm for the first 3.5 h of heating. The investigation shows that the initial changes to the PLGA direct-writing outcomes seen in the first 3.5 h are temporary and that longer times result in a more stable MEW process.}, language = {en} } @article{KieselBeyersKaliszetal.2022, author = {Kiesel, Matthias and Beyers, Inga and Kalisz, Adam and Joukhadar, Ralf and W{\"o}ckel, Achim and Herbert, Saskia-Laureen and Curtaz, Carolin and Wulff, Christine}, title = {A 3D printed model of the female pelvis for practical education of gynecological pelvic examination}, series = {3D Printing in Medicine}, volume = {8}, journal = {3D Printing in Medicine}, doi = {10.1186/s41205-022-00139-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313347}, year = {2022}, abstract = {Background Pelvic palpation is a core component of every Gynecologic examination. It requires vigorous training, which is difficult due to its intimate nature, leading to a need of simulation. Up until now, there are mainly models available for mere palpation which do not offer adequate visualization of the concerning anatomical structures. In this study we present a 3D printed model of the female pelvis. It can improve both the practical teaching of gynecological pelvic examination for health care professionals and the spatial understanding of the relevant anatomy. Methods We developed a virtual, simplified model showing selected parts of the female pelvis. 3D printing was used to create a physical model. Results The life-size 3D printed model has the ability of being physically assembled step by step by its users. Consequently, it improves teaching especially when combining it with commercial phantoms, which are built solely for palpation training. This is achieved by correlating haptic and visual sensations with the resulting feedback received. Conclusion The presented 3D printed model of the female pelvis can be of aid for visualizing and teaching pelvic anatomy and examination to medical staff. 3D printing provides the possibility of creating, multiplying, adapting and sharing such data worldwide with little investment of resources. Thus, an important contribution to the international medical community can be made for training this challenging examination.}, language = {en} } @article{KieselBeyersKaliszetal.2022, author = {Kiesel, Matthias and Beyers, Inga and Kalisz, Adam and W{\"o}ckel, Achim and L{\"o}b, Sanja and Schlaiss, Tanja and Wulff, Christine and Diessner, Joachim}, title = {Evaluating a novel 3D printed model for simulating Large Loop Excision of the Transformation Zone (LLETZ)}, series = {3D Printing in Medicine}, volume = {8}, journal = {3D Printing in Medicine}, doi = {10.1186/s41205-022-00143-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313356}, year = {2022}, abstract = {Background Electrosurgical excisions are common procedures for treating cervical dysplasia and are often seen as minor surgeries. Yet, thorough training of this intervention is required, as there are considerable consequences of inadequate resections, e.g. preterm birth, the risk of recurrence, injuries and many more. Unfortunately, there is a lack of sufficiently validated possibilities of simulating electrosurgeries, which focus on high fidelity and patient safety. Methods A novel 3D printed simulator for examination and electrosurgical treatment of dysplastic areas of the cervix was compared with a conventional simulator. Sixty medical students experienced a seminar about cervical dysplasia. Group A underwent the seminar with the conventional and Group B with the novel simulator. After a theoretical introduction, the students were randomly assigned by picking a ticket from a box and went on to perform the hands-on training with their respective simulator. Each student first obtained colposcopic examination training. Then he or she performed five electrosurgical excisions (each). This was assessed with a validated score, to visualize their learning curve. Furthermore, adequate and inadequate resections and contacts between electrosurgical loop and vagina or speculum were counted. Both groups also assessed the seminar and their simulator with 18 questions (Likert-scales, 1-10, 1 = strongly agree / very good, 10 = strongly disagree / very bad). Group B additionally assessed the novel simulator with four questions (similar Likert-scales, 1-10). Results Nine of 18 questions showed statistically significant differences favoring Group B (p < 0.05). Group B also achieved more adequate R0-resections and less contacts between electrosurgical loop and vagina or speculum. The learning curves of the performed resections favored the novel simulator of Group B without statistically significant differences. The four questions focusing on certain aspects of the novel simulator indicate high appreciation of the students with a mean score of 1.6 points. Conclusion The presented novel simulator shows several advantages compared to the existing model. Thus, novice gynecologists can be supported with a higher quality of simulation to improve their training and thereby patient safety.}, language = {en} } @article{KieselBeyersKaliszetal.2022, author = {Kiesel, Matthias and Beyers, Inga and Kalisz, Adam and W{\"o}ckel, Achim and Quenzer, Anne and Schlaiß, Tanja and Wulff, Christine and Diessner, Joachim}, title = {Evaluating the value of a 3D printed model for hands-on training of gynecological pelvic examination}, series = {3D Printing in Medicine}, volume = {8}, journal = {3D Printing in Medicine}, doi = {10.1186/s41205-022-00149-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313365}, year = {2022}, abstract = {Background Simulation in the field of gynecological pelvic examination with educational purposes holds great potential. In the current manuscript we evaluate a 3D printed model of the female pelvis, which improves practical teaching of the gynecological pelvic examination for medical staff. Methods We evaluated the benefit of a 3D printed model of the female pelvis (Pelvisio®) as part of a seminar ("skills training") for teaching gynecological examination to medical students. Each student was randomly assigned to Group A or B by picking a ticket from a box. Group A underwent the skills training without the 3D printed model. Group B experienced the same seminar with integration of the model. Both groups evaluated the seminar by answering five questions on Likert scales (1-10, 1 = "very little" or "very poor", 10 equals "very much" or "very good"). Additionally, both groups answered three multiple-choice questions concerning pelvic anatomy (Question 6 to 8). Finally, Group B evaluated the 3D printed model with ten questions (Question 9 to 18, Likert scales, 1-10). Results Two of five questions concerning the students' satisfaction with the seminar and their gained knowledge showed statistically significant better ratings in Group B (6.7 vs. 8.2 points and 8.1 vs. 8.9 points (p < 0.001 and p < 0.009). The other three questions showed no statistically significant differences between the traditional teaching setting vs. the 3D printed model (p < 0.411, p < 0.344 and p < 0.215, respectively). The overall mean score of Question 1 to 5 showed 8.4 points for Group B and 7.8 points for Group A (p < 0.001). All three multiple-choice questions, asking about female pelvic anatomy, were answered more often correctly by Group B (p < 0.001, p < 0.008 and p < 0.001, respectively). The mean score from the answers to Questions 9 to 18, only answered by Group B, showed a mean of 8.6 points, indicating, that the students approved of the model. Conclusion The presented 3D printed model Pelvisio® improves the education of female pelvic anatomy and examination for medical students. Hence, training this pivotal examination can be supported by a custom designed anatomical model tailored for interactive and explorative learning.}, language = {en} } @article{HerzStefanescuLohretal.2022, author = {Herz, Stefan and Stefanescu, Maria R. and Lohr, David and Vogel, Patrick and Kosmala, Aleksander and Terekhov, Maxim and Weng, Andreas M. and Grunz, Jan-Peter and Bley, Thorsten A. and Schreiber, Laura M.}, title = {Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission}, series = {PloS One}, volume = {17}, journal = {PloS One}, number = {6}, doi = {10.1371/journal.pone.0270689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300129}, year = {2022}, abstract = {Background To investigate the effects of B\(_1\)-shimming and radiofrequency (RF) parallel transmission (pTX) on the visualization and quantification of the degree of stenosis in a coronary artery phantom using 7 Tesla (7 T) magnetic resonance imaging (MRI). Methods Stenosis phantoms with different grades of stenosis (0\%, 20\%, 40\%, 60\%, 80\%, and 100\%; 5 mm inner vessel diameter) were produced using 3D printing (clear resin). Phantoms were imaged with four different concentrations of diluted Gd-DOTA representing established arterial concentrations after intravenous injection in humans. Samples were centrally positioned in a thorax phantom of 30 cm diameter filled with a custom-made liquid featuring dielectric properties of muscle tissue. MRI was performed on a 7 T whole-body system. 2D-gradient-echo sequences were acquired with an 8-channel transmit 16-channel receive (8 Tx / 16 Rx) cardiac array prototype coil with and without pTX mode. Measurements were compared to those obtained with identical scan parameters using a commercially available 1 Tx / 16 Rx single transmit coil (sTX). To assess reproducibility, measurements (n = 15) were repeated at different horizontal angles with respect to the B0-field. Results B\(_1\)-shimming and pTX markedly improved flip angle homogeneity across the thorax phantom yielding a distinctly increased signal-to-noise ratio (SNR) averaged over a whole slice relative to non-manipulated RF fields. Images without B\(_1\)-shimming showed shading artifacts due to local B\(_1\)\(^+\)-field inhomogeneities, which hampered stenosis quantification in severe cases. In contrast, B\(_1\)-shimming and pTX provided superior image homogeneity. Compared with a conventional sTX coil higher grade stenoses (60\% and 80\%) were graded significantly (p<0.01) more precise. Mild to moderate grade stenoses did not show significant differences. Overall, SNR was distinctly higher with B\(_1\)-shimming and pTX than with the conventional sTX coil (inside the stenosis phantoms 14\%, outside the phantoms 32\%). Both full and half concentration (10.2 mM and 5.1 mM) of a conventional Gd-DOTA dose for humans were equally suitable for stenosis evaluation in this phantom study. Conclusions B\(_1\)-shimming and pTX at 7 T can distinctly improve image homogeneity and therefore provide considerably more accurate MR image analysis, which is beneficial for imaging of small vessel structures.}, language = {en} }