@article{RuppertFranzSaratisetal.2017, author = {Ruppert, Manuela and Franz, Mirjam and Saratis, Anastasios and Escarcena, Laura Velo and Hendrich, Oliver and Gooi, Li Ming and Schwenkert, Isabell and Klebes, Ansgar and Scholz, Henrike}, title = {Hangover links nuclear RNA signaling to cAMP regulation via the phosphodiesterase 4d ortholog dunce}, series = {Cell Reports}, volume = {18}, journal = {Cell Reports}, number = {2}, doi = {10.1016/j.celrep.2016.12.048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171950}, pages = {533-544}, year = {2017}, abstract = {The hangover gene defines a cellular stress pathway that is required for rapid ethanol tolerance in Drosophila melanogaster. To understand how cellular stress changes neuronal function, we analyzed Hangover function on a cellular and neuronal level. We provide evidence that Hangover acts as a nuclear RNA binding protein and we identified the phosphodiesterase 4d ortholog dunce as a target RNA. We generated a transcript-specific dunce mutant that is impaired not only in ethanol tolerance but also in the cellular stress response. At the neuronal level, Dunce and Hangover are required in the same neuron pair to regulate experience-dependent motor output. Within these neurons, two cyclic AMP (cAMP)-dependent mechanisms balance the degree of tolerance. The balance is achieved by feedback regulation of Hangover and dunce transcript levels. This study provides insight into how nuclear Hangover/RNA signaling is linked to the cytoplasmic regulation of cAMP levels and results in neuronal adaptation and behavioral changes.}, language = {en} } @article{MaiellaroLohseKitteetal.2016, author = {Maiellaro, Isabella and Lohse, Martin J. and Kitte, Robert J. and Calebiro, Davide}, title = {cAMP Signals in Drosophila Motor Neurons Are Confined to Single Synaptic Boutons}, series = {Cell Reports}, volume = {17}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2016.09.090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162324}, pages = {1238-1246}, year = {2016}, abstract = {The second messenger cyclic AMP (cAMP) plays an important role in synaptic plasticity. Although there is evidence for local control of synaptic transmission and plasticity, it is less clear whether a similar spatial confinement of cAMP signaling exists. Here, we suggest a possible biophysical basis for the site-specific regulation of synaptic plasticity by cAMP, a highly diffusible small molecule that transforms the physiology of synapses in a local and specific manner. By exploiting the octopaminergic system of Drosophila, which mediates structural synaptic plasticity via a cAMP-dependent pathway, we demonstrate the existence of local cAMP signaling compartments of micrometer dimensions within single motor neurons. In addition, we provide evidence that heterogeneous octopamine receptor localization, coupled with local differences in phosphodiesterase activity, underlies the observed differences in cAMP signaling in the axon, cell body, and boutons.}, language = {en} }