@article{ElsebergBorrmannNuechter2013, author = {Elseberg, Jan and Borrmann, Dorit and N{\"u}chter, Andreas}, title = {Algorithmic Solutions for Computing Precise Maximum Likelihood 3D Point Clouds from Mobile Laser Scanning Platforms}, series = {Remote Sensing}, volume = {5}, journal = {Remote Sensing}, number = {11}, doi = {10.3390/rs5115871}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130478}, pages = {5871-5906}, year = {2013}, abstract = {Mobile laser scanning puts high requirements on the accuracy of the positioning systems and the calibration of the measurement system. We present a novel algorithmic approach for calibration with the goal of improving the measurement accuracy of mobile laser scanners. We describe a general framework for calibrating mobile sensor platforms that estimates all configuration parameters for any arrangement of positioning sensors, including odometry. In addition, we present a novel semi-rigid Simultaneous Localization and Mapping (SLAM) algorithm that corrects the vehicle position at every point in time along its trajectory, while simultaneously improving the quality and precision of the entire acquired point cloud. Using this algorithm, the temporary failure of accurate external positioning systems or the lack thereof can be compensated for. We demonstrate the capabilities of the two newly proposed algorithms on a wide variety of datasets.}, language = {en} } @article{LauterbachBorrmannHessetal.2015, author = {Lauterbach, Helge A. and Borrmann, Dorit and Heß, Robin and Eck, Daniel and Schilling, Klaus and N{\"u}chter, Andreas}, title = {Evaluation of a Backpack-Mounted 3D Mobile Scanning System}, series = {Remote Sensing}, volume = {7}, journal = {Remote Sensing}, number = {10}, doi = {10.3390/rs71013753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126247}, pages = {13753-13781}, year = {2015}, abstract = {Recently, several backpack-mounted systems, also known as personal laser scanning systems, have been developed. They consist of laser scanners or cameras that are carried by a human operator to acquire measurements of the environment while walking. These systems were first designed to overcome the challenges of mapping indoor environments with doors and stairs. While the human operator inherently has the ability to open doors and to climb stairs, the flexible movements introduce irregularities of the trajectory to the system. To compete with other mapping systems, the accuracy of these systems has to be evaluated. In this paper, we present an extensive evaluation of our backpack mobile mapping system in indoor environments. It is shown that the system can deal with the normal human walking motion, but has problems with irregular jittering. Moreover, we demonstrate the applicability of the backpack in a suitable urban scenario.}, language = {en} }