@phdthesis{Schardt2023, author = {Schardt, Simon}, title = {Agent-based modeling of cell differentiation in mouse ICM organoids}, doi = {10.25972/OPUS-30194}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301940}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Mammalian embryonic development is subject to complex biological relationships that need to be understood. However, before the whole structure of development can be put together, the individual building blocks must first be understood in more detail. One of these building blocks is the second cell fate decision and describes the differentiation of cells of the inner cell mass of the embryo into epiblast and primitive endoderm cells. These cells then spatially segregate and form the subsequent bases for the embryo and yolk sac, respectively. In organoids of the inner cell mass, these two types of progenitor cells are also observed to form, and to some extent to spatially separate. This work has been devoted to these phenomena over the past three years. Plenty of studies already provide some insights into the basic mechanics of this cell differentiation, such that the first signs of epiblast and primitive endoderm differentiation, are the expression levels of transcription factors NANOG and GATA6. Here, cells with low expression of GATA6 and high expression of NANOG adopt the epiblast fate. If the expressions are reversed, a primitive endoderm cell is formed. Regarding the spatial segregation of the two cell types, it is not yet clear what mechanism leads to this. A common hypothesis suggests the differential adhesion of cell as the cause for the spatial rearrangement of cells. In this thesis however, the possibility of a global cell-cell communication is investigated. The approach chosen to study these phenomena follows the motto "mathematics is biology's next microscope". Mathematical modeling is used to transform the central gene regulatory network at the heart of this work into a system of equations that allows us to describe the temporal evolution of NANOG and GATA6 under the influence of an external signal. Special attention is paid to the derivation of new models using methods of statistical mechanics, as well as the comparison with existing models. After a detailed stability analysis the advantages of the derived model become clear by the fact that an exact relationship of the model parameters and the formation of heterogeneous mixtures of two cell types was found. Thus, the model can be easily controlled and the proportions of the resulting cell types can be estimated in advance. This mathematical model is also combined with a mechanism for global cell-cell communication, as well as a model for the growth of an organoid. It is shown that the global cell-cell communication is able to unify the formation of checkerboard patterns as well as engulfing patterns based on differently propagating signals. In addition, the influence of cell division and thus organoid growth on pattern formation is studied in detail. It is shown that this is able to contribute to the formation of clusters and, as a consequence, to breathe some randomness into otherwise perfectly sorted patterns.}, subject = {Mathematische Modellierung}, language = {en} } @inproceedings{PeterSchartlAndersetal.1985, author = {Peter, R. U. and Schartl, Manfred and Anders, F. and Duncker, H.-R.}, title = {Pigment pattern formation during embryogenesis in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69370}, year = {1985}, abstract = {No abstract available.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @phdthesis{Englberger2012, author = {Englberger, Eva}, title = {Gene regulation in hearts of Hey-mutant mouse embryos and monitoring of sub-cellular Hey1 distribution}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Hey-mutant mouse hearts at embryonic day E14.5 were shown to react to the knock out of Hey2 with several up-regualted genes. This up-regulation is due to the lack of Hey2 and cannot be explained by the structural changes in heart morphology as shown using control animals. Part of the gene regulation was further validated using in situ hybridization. Hey1 was located to the nucleus in immunofluorescence experiments. However, experiments on protein level showed also amount of Hey1 within the cytoplasm. The nuclear localization of Hey1 was unchanged during all cell cycle phases as well as when CaMKII was co-expressed or other cellular pathways were inhibited or stimulated. Hey1 does not seem to interact with the nuclear transport proteins importin-alpha and -beta, therefore it still needs to be elucidated how Hey1 is transported into the nucleus.}, subject = {Maus}, language = {en} } @phdthesis{Subramanian2011, author = {Subramanian, Narayan}, title = {Role of NaV1.9 in activity dependent axon growth in embryonic cultured motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Spontaneous neural activity has been shown to regulate crucial events in neurite growth including axonal branching and path finding. In animal models of spinal muscular atrophy (SMA) cultured embryonic mouse motoneurons show distinct defect in axon elongation and neural activity. This defect is governed by abnormal clustering of Ca2+ channels in the axonal regions and the protruding growth cone area. The mechanisms that regulate the opening of calcium channels in developing motoneurons are not yet clear. The question was addressed by blocking neural activity in embryonic cultured motoneurons by pharmacological inhibition of voltage-gated sodium channels (VGSC) by saxitoxin (STX) and tetrodotoxin (TTX). Low dosages of STX resulted in significant reduction of axon growth and neural activity in cultured motoneurons. This pharmacological treatment did not affect survival of motoneurons in comparison to control motoneurons that was grown in the presence of survival neurotrophic factors BDNF and CNTF. It was also found that STX was 10 times more potent than TTX a common inhibitor of VGSC with a reduced activity on the TTX-insensitive sodium channels NaV1.5, NaV1.8 and NaV1.9. Reverse Transcriptase-PCR experiments revealed the presence of NaV1.9 as the likely candidate that begins to express from embryonic stage sixteen in the mouse spinal cord. Immunolabelling experiments showed that the channel is expressed in the axonal compartments and axonal growth cones in cultured motoneurons. Suppression of NaV1.9 in cultured motoneurons by lentivirus mediated short hairpin-RNA (shRNA) resulted in shorter axon length in comparison with uninfected and scrambled constructs. Further, embryonic motoneurons cultured from NaV1.9 knockout mice also showed a significant reduction in neural activity and axon growth. The findings of this work highlight the role of NaV1.9 as an important contender in regulating activity dependent axon growth in embryonic cultured motoneurons. NaV1.9 could therefore be considered as a prospective molecule that could play an important role in regulating axon growth in motoneuron disease models like spinal muscular atrophy (SMA).}, subject = {Axon}, language = {en} } @phdthesis{Xiang2006, author = {Xiang, Chaomei}, title = {The role of B-RAF in embryonic development of mouse forebrain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Die Familie der RAF-Kinasen umfasst drei Mitglieder, A-RAF, B-RAF und C-RAF. Nur f{\"u}r die B-RAF-Isoform wurde eine wichtige Funktion f{\"u}r die Entwicklung des Zentralen Nervensystems (ZNS) gefunden. Das Fehlen von B-RAF f{\"u}hrt bei neu generierten embryonalen Neuronen zum Zelltod, weil sie in vitro nicht auf {\"u}berlebensfaktoren reagieren k{\"o}nnen. Bei einer zweiten Zelllinie, die durch die Abwesenheit von B-RAF beeintr{\"a}chtigt ist, handelt es sich um endotheliale Zellen. Ihr Zelltod f{\"u}hrt zu inneren Blutungen und zu Letalit{\"a}t von B-RAF-/--M{\"a}usen zwischen Tag 10.5 (E10.5) und 12.5 (E12.5) der Embryonalentwicklung. Dies verhinderte bisher weitere Untersuchungen der neuralen B-RAF-Funktion bei sp{\"a}teren Stadien. Im Gegensatz zu B-RAF-/--M{\"a}usen {\"u}berleben B-RAFKIN/KIN-M{\"a}use die Mitte der Embryonalentwicklung, da ihre Endothelzellen vor Apoptose gesch{\"a}tzt sind. Diese Tiere besitzen kein B-RAF, stattdessen wird im B-RAF-Locus ein chim{\"a}res Protein exprimiert, das den N-Terminus von B-RAF sowie alle Dom{\"a}nen von A-RAF umfasst. Der Schutz vor abnormaler neuraler Apoptose im Vorderhirn macht diese Tiere zu einem potentiellen Modell zur Untersuchung der Proliferations- und Differenzierungsfunktion von B-RAF, die die Kinase neben der {\"U}berlebensfunktion in der ZNS-Entwicklung aus{\"u}bt. Die detaillierte Untersuchung der B-RAFKIN/KIN-Tiere konzentrierte sich auf die Entwicklung der Hirnrinde. Augenscheinlich waren kortikale Defekte im B-RAFKIN/KIN Vorderhirn: Der Verlust von B-RAF f{\"u}hrte zu einer starken Reduzierung von Brn-2 exprimierenden pyramidalen Projektions-Neuronen begleitet von einer St{\"o}rung der Dendritenbildung mit weniger und d{\"u}nneren Dendriten in diesen oberen Schichten. Weitere Untersuchungen mit BrdU-Markierungsexperimenten zeigten in der ventrikul{\"a}ren Schicht reduzierte Zellproliferation f{\"u}r E14.5-E16.5 der Mutantenembryonen und ein Migrationsdefizit der sp{\"a}tgebideten kortikalen Neuronen. W{\"a}hrend der Proliferationsdefekt der Hirnrinden-Vorl{\"a}uferzellen mit einer reduzierten ERK-Aktivierung einherging, bleibt der Mechanismus der gest{\"o}rten neuralen Migration zu erkl{\"a}ren. Unsere Hypothese ist, dass die subzellul{\"a}re Lokalisation von Phospho-ERK in den wandernden Hirnrinden-Neuronen der B-RAFKIN/KIN-M{\"a}use ver{\"a}ndert sein k{\"o}nnte. Zur Best{\"a}igung der in vivo-Funktion von B-RAF und weiteren Studien zu ihrer unbekannten Rolle in der embryonalen Neurogenese sowie anderen Morphogenesen w{\"a}re die konditionale B-RAF Inaktivierung erforderlich. Durch die Deletion des genetischen Materials bzw. die Inaktivierung der Genfunktion in ausgew{\"i}?'½hlten Zellen zu einem bestimmten Zeitpunkt ließen sich die Embryo-Letalit{\"a}t sowie unerw{\"u}nschte pleiotrope Nebeneffekte vermeiden und akkumulierende, kompensierende Entwicklungsver{\"a}nderungen von Beginn an ausschließen. Um die Cre Rekombinase-Methode einsetzen zu k{\"o}nnen, wurden floxed B-RAF embryonale Stammzell (ES)-Zelllinien generiert. Außerdem wurde ein auf dem Tetrazyklin Operator basierendes Schaltallel in den B-RAF Genort von embryonalen Stammzellen integriert, so dass die B-RAF Expression konditional und reversibel durch die Zugabe von Doxyzyklin angeschaltet werden konnte. Bisher wurden hochgradige chim{\"a}re M{\"a}use nach Blastozysten-Injektion geboren. Die Keimbahn{\"u}bertragung dieser chim{\"a}ren M{\"a}use wird momentan untersucht. Wenn beide konditionale Mauslinien bereit sind, k{\"i}?'½nnte die Entwicklung ihres Zentralnervensystems untersucht werden, um die Rolle von B-RAF in der Entwicklung des Nervensystems herauszufinden.}, subject = {Maus}, language = {en} } @phdthesis{Tyrsin2003, author = {Tyrsin, Oleg}, title = {Role of Raf family members in mouse development}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9453}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Raf Proteine sind Serin/Threonin Kinasen, die als zentrale Elemente des Ras, Raf, Mek, Map Kinase Wegs, an der Weiterleitung von extrazellul{\"a}ren Signalen von der Zellmembran zu nukle{\"a}ren Effektoren beteiligt sind. Auf diese Weise kontrollieren sie elementare Prozesse wie Proliferation, Differenzierung und das {\"U}berleben von Zellen. In S{\"a}ugetieren wurden drei funktionelle Gene (A-, B- and C-raf) beschrieben. Aus biochemischen Untersuchungen ergibt sich, dass die Isozyme {\"u}berlappende aber auch differentielle Funktionen {\"u}bernehmen. Allerdings wurde ein differenziertes Verst{\"a}ndnis der jeweiligen spezifischen Rolle dadurch erschwert, dass in den meisten Zelltypen verschiedene Raf-Isozyme expremiert werden und dass wegen der Vielzahl der Aktivatoren und Effektoren eine eindeutige Isoform-Zuordnung schwer m{\"o}glich war. Aufgrund der Beteiligung an verschiedenen Krankheitsbildern, insbesondere der Tumorentstehung und -progression, ist jedoch die Aufkl{\"a}rung der Isozym-spezifischen Funktionen von vorranginger wissenschaftlicher Bedeutung. B-Raf hat unter den Raf Kinasen die h{\"o}chste Kinaseaktivit{\"a}t und zeigt antiapoptotische Eigenschaften. B-Raf knockout M{\"a}use zeigen eine allgemeine Wachstumsverz{\"o}gerung und sterben zwischen E10,5 und E12,5 aufgrund fehlentwickelter Gef{\"a}sse in Folge massiver Apoptose differenzierter Endothelzellen. [1]. Um die Lethalit{\"a}t des B-Raf-/- (KO) Ph{\"a}notyps zu {\"u}berkommen und um die Redundanz der B-Raf Proteine weiter zu untersuchen, wurden M{\"a}use generiert, die unter der Kontrolle des B-Raf Promoters statt B-Raf eine A-Raf cDNA exprimieren. Nur in einem Fall entwickelte sich eine ausgewachsene p20 Maus ohne sichtbare Entwicklungsdefekte oder Verhaltensauff{\"a}lligkeiten. Dar{\"u}ber hinaus wurden lebende Embryonen mit normaler Entwicklung aber reduzierter Gr{\"o}sse mit niedriger Inzidenz zwischen E12,5d und E16,5d beobachtet. In allen diesen F{\"a}llen fanden wir ein intaktes Gef{\"a}ßsystem. Andererseits waren Neurogenese und die Bewegung der neuralen Vorl{\"a}uferzellen in den {\"u}berlebenden Embryonen gest{\"o}rt, was in einigen F{\"a}llen zu unterentwickelten Hirnregionen f{\"u}hrte. Mittels TUNEL bzw. PCNA Assay konnten wir zeigen, dass mehr apoptotische und weniger proliferierende Zellen in ventrikul{\"a}rer und subventrikul{\"a}rer Zone der Hirn Ventrikel und im Striatum der KIN Embryonen zu finden sind. Außerdem wurden in einer Reihe von Geweben von E13,5d und in den Lungen von E16,5d Embryonen, vermehrt apoptotische Zellen beobachtet. Dies war in der einen ausgewachsenen KIN Maus nicht der Fall. Diese zeigte einen reduzierten Anteil an neuronalen Vorl{\"a}uferzellen in der subgranul{\"a}ren Zone des Hippocampus und an reifen Neuronen im Riechkolben. Ansonsten waren aber keine St{\"o}rungen der Neurogenese in der ausgewachsenen KIN Maus detektierbar. Fibroblasten die aus KIN Embryonen etabliert wurden, zeigten im Vergleich zu Wildtypzellen reduzierte F{\"a}higkeit zur Proliferation und erh{\"o}hte Sensibilit{\"a}t gegen{\"u}ber Apoptoseausl{\"o}sern. Die erh{\"o}hte Apoptosetendenz spiegelte sich auf molekularer Ebene in einer Reduktion an antiapoptotischen Molek{\"u}len wieder. Aktive ERK und Akt Kinase sind erniedrigt. Außerdem war von dem bekannten Raf Substrat BAD, weniger an der inaktiven phosphorylierten Form zu beobachten, wodurch bei gleicher Menge Gesamtprotein auf ein Mehr an proapoptotischem unphosphoryliertem BAD geschlossen werden kann. Zusammengefasst zeigen diese Daten, dass die Substitution von B-Raf durch die weniger aktive A-Raf Kinase zwar die endotheliale Apoptose verhindern kann, die die Ursache f{\"u}r das fr{\"u}he Absterben der B-Raf-/- (KO) M{\"a}use ist, dass aber die normale Entwicklung dennoch entscheidend gest{\"o}rt ist.}, subject = {Maus}, language = {en} } @phdthesis{Petrovic2004, author = {Petrovic, Suzana}, title = {In vivo analysis of homing pattern and differentiation potential of cells deriving from embryonic and adult haematopoietic regions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9323}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {The experimental work of this thesis addresses the questions of whether established cell lines injected into murine blastocysts find their way back home and seed preferentially at the site of their origin. Furthermore, can they change their fate and differentiate to unrelated cell types when exposed to the embryonic environment. This survey was based on the fact that different cell lines have different potentials in developing embryos, dependent on their cellular identity. The cell lines used in this survey were AGM region-deriving DAS 104-4, DAS 104-8 cells, yolk sac-deriving YSE cells and bone marrow-deriving FDCP mix cells. These cells were injected into mouse blastocysts. Donor cells were traced in developing embryos via specific markers. Analysis of the embryos revealed that DAS cells are promiscuous in their seeding pattern, since they were found in all analysed tissues with similar frequencies. YSE cells showed preferences in seeding yolk sac and liver. YSE donor cells in chimaeric tissues were not able to change their immuno-phenotype, indicating that they did not change their destiny. Analysis of adult mice did not reveal any of YSE-derived cells donor contribution. In contrast, FDCP mix cells mostly engrafted haematopoietic tissues, although the embryos analysed by in situ hybridization had donor signals frequently in cartilage primordia, heads, and livers. Analysis of whether FDCPmix-derived cells found in foetal livers were of haematopoietic or hepatocytes nature showed that progeny of injected FDCP mix cells do not differentiate into cells that express a hepatocyte-specific marker. Further analysis showed that FDCPmix-derived donor cells found in brain express neural or haematopoietic markers. In order to reveal if they transdifferentiate to neurons or fuse with neurons/glial cells, nuclear diameters of donor and recipient cells were determined. Comparison of the nuclear diameters of recipient and donor cells revealed no differences. Therefore this suggests that progeny of FDCP mix in brain are not fusion products. Analysis of adult mice tissues revealed that presence of FDCP mix-derived cells was the highest in brains. These results confirmed the assumption that the developmental potential of the analysed cells cannot be easily modified, even when exposed to early embryonic environment. Therefore one can conclude that the analysed cell types had different homing patterns depending on their origins.}, subject = {Zelllinie}, language = {en} } @phdthesis{Porsch2002, author = {Porsch, Matthias}, title = {OMB and ORG-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3614}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Members of the T-box gene family encode transcription factors that play key roles during embryonic development and organogenesis of invertebrates and vertebrates. The defining feature of T-box proteins is an about 200 aa large, conserved DNA binding motif, the T domain. Their importance for proper development is highlighted by the dramatic phenotypes of T-box mutant animals. My thesis was mainly focused on two Drosophila T-box genes, optomotor-blind (omb) and optomotor-blind related 1 (org-1), and included (i) a genetic analysis of org-1 and (ii) the identification of molecular determinants within OMB and ORG-1 that confer functional specificity. (i) Genetic analysis of org-1 initially based on a behavioral Drosophila mutant, C31. C31 is a X-linked, recessive mutant and was mapped to 7E-F, the cytological region of org-1. This pleiotropic mutant is manifested in walking defects, structural aberrations in the central brain, and "held-out" wings. Molecular analysis revealed that C31 contains an insertion of a 5' truncated I retrotransposon within the 3' untranslated transcript of org-1, suggesting that C31 might represent the first org-1 mutant. Based on this hypothesis, we screened 44.500 F1 female offspring of EMS mutagenized males and C31 females for the "held-out" phenotype, but failed to isolate any C31 or org-1 mutant, although this mutagenesis was functional per se. Since we could not exclude the possibility that our failure is due to an idiosyncracy of C31, we intended not to rely on C31 in further genetic experiments and followed a reverse genetic strategy . All P element lines cytologically mapping to 7E-7F were characterized for their precise insertion sites. 13 of the 19 analyzed lines had P element insertions within a hot-spot 37 kb downstream of org-1. No P element insertions within org-1 could be identified, but several P element insertions were determined on either side of org-1. The org-1 nearest insertions were used for local-hop experiments, in which we associated 6 new genes with P insertions, but failed to target org-1. The closest P elements are still 10 kb away from org-1. Subsequently, we employed org-1 flanking P elements to induce precise deletions in 7E-F spanning org-1. Two org-1 flanking P elements were brought together on a recombinant chromosome. Remobilization of P elements in cis configuration frequently results in deletions with the P element insertion sites as deficiency endpoints. In a first attempt, we expected to identify deficiencies by screening for C31 alleles. 8 new C31 alleles could be isolated. The new C31 chromosomes, however, did not carry the desired deletion. Molecular analysis indicated that C31 is not caused by aberrations in org-1, but by mutations in a distal locus. We repeated the P element remobilization and screened for the absence of P element markers. 4 lethal chromosomes could be isolated with a deletion of the org-1 locus. (ii) The consequences of ectopic org-1 were analyzed using UAS-org-1 transgenic flies and a number of different Gal4 driver lines. Misexpression of org-1 during imaginal development interfered with the normal development of many organs and resulted in flies with a plethora of phenotypes. These include a homeotic transformation of distal antenna (flagellum) into distal leg structures, a strong size reduction of the legs along their proximo-distal axis, and stunted wings. Like ectopic org-1, ectopic omb leads to dramatic changes of normal developmental pathways in Drosophila as well. dpp-Gal4/ UAS-omb flies are late pupal lethal and show an ectopic pair of wings and largely reduced eyes. GMR-Gal4 driven ectopic omb expression in the developing eye causes a degeneration of the photoreceptor cells, while GMR-Gal4/ UAS-org-1 flies have intact eyes. Hence, ectopic org-1 and omb induce profound phenotypes that are qualitatively different for these homologous genes. To begin to address the question where within OMB and ORG-1 the specificity determinants reside, we conceptionally subdivided both proteins into three domains and tested the relevance ofthese domains for functional specificity in vivo. The single domains were cloned and used as modules to assemble all possible omb-org-1 chimeric trans- genes. A method was developed to determine the relative expression strength of different UAS-transgenes, allowing to compare the various transgenic constructs for qualitative differences only, excluding different transgene quantities. Analysis of chimeric omb-org-1 transgenes with the GMR-Gal4 driver revealed that all three OMB domains contribute to functional specificity.}, subject = {Taufliege}, language = {en} }