@phdthesis{Kern2014, author = {Kern, Selina Melanie}, title = {Functional characterization of splicing-associated kinases in the blood stages of the malaria parasite Plasmodium falciparum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115219}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Besides HIV and tuberculosis, malaria still is one of the most devastating infectious diseases especially in developing countries, with Plasmodium falciparum being responsible for the frequently lethal form of malaria tropica. It is a major cause of mortality as well as morbidity, whereby pregnant women and children under the age of five years are most severely affected. Rapidly emerging drug resistances and the lack of an effective and safe vaccine hamper the combat against malaria by chemical and pharmacological regimens, and moreover the poor socio-economic and healthcare conditions in malaria-endemic countries are compromising the extermination of this deadly tropical disease to a large extent. Malaria research is still questing for druggable targets in the parasitic protozoan which pledge to be refractory against evolving resistance-mediating mutations and yet constitute affordable and compliant antimalarial chemotherapeutics. The parasite kinome consists of members that represent most eukaryotic protein kinase groups, but also contains several groups that can not be assigned to conservative ePK groups. Moreover, given the remarkable divergence of plasmodial kinases in respect to the human host kinome and the fact that several plasmodial kinases have been identified that are essential for the intraerythrocytic developmental cycle, these parasite enzymes represent auspicious targets for antimalarial regimens. Despite elaborate investigations on several other ePK groups, merely scant research has been conducted regarding the four identified members of the cyclin-dependent kinase-like kinase (CLK) family, PfCLK-1-4. In other eukaryotes, CLKs are involved in mRNA processing and splicing by means of phosphorylation of serine/arginine-rich (SR) proteins, which are crucial components of the splicing machinery in the alternative splicing pathway. All four PfCLKs are abundantly expressed in asexual parasites and gametocytes, and stage-specific expression profiles of PfCLK-1 and PfCLK-2 exhibited nucleus-associated localization and an association with phosphorylation activity. In the course of this study, PfCLK-3 and PfCLK-4 were functionally characterized by indirect immunofluorescence, Western blot analysis and kinase activity assays. These data confirm that the two kinases are primarily expressed in the nucleus of trophozoites and both kinases possess in vitro phosphorylation activity on physiological substrates. Likewise PfCLK-1 and PfCLK-2, reverse genetic studies exhibited the indispensability of both PfCLKs on the asexual life cycle of P. falciparum, rendering them as potential candidates for antiplasmodial strategies. Moreover, this study was conducted to identify putative SR proteins as substrates of all four PfCLKs. Previous alignments revealed a significant homology of the parasite CLKs to yeast SR protein kinase Sky1p. Kinase activity assays showed in vitro phosphorylation of the yeast Sky1p substrate and SR protein Npl3p by precipitated PfCLKs. In addition, four homologous plasmodial SR proteins were identified that are phosphorylated by PfCLKs in vitro: PfASF-1, PFSRSF12, PfSFRS4 and PfSR-1. All four parasite SR splicing factors are predominantly expressed in the nuclei of trophozoites. For PfCLK-1, a co-localization with the SR proteins was verified. Finally, a library of human and microbial CLK inhibitors and the antiseptic chlorhexidine (CHX) was screened to determine their inhibitory effect on different parasite life cycle stages and on the PfCLKs specifically. Five inhibitors out of 63 compounds from the investigated library were selected that show a moderate inhibition on asexual life cycle stages with IC50 values ranging between approximately 4 and 8 µM. Noteworthy, these inhibitors belong to the substance classes of aminopyrimidines or oxo-β-carbolines. Actually, the antibiotic compound CHX demonstrated an IC50 in the low nanomolar range. Stage-of-inhibition assays revealed that CHX severely affects the formation of schizonts. All of the selected CLKs inhibitors also affect gametocytogenesis as well as gametogenesis, as scrutinized in gametocyte toxicity assays and exflagellation assays, respectively. Kinase activity assays confirm a specific inhibition of CLK-mediated phosphorylation of all four kinases, when the CLK inhibitors are applied on immunoprecipitated PfCLKs. These findings on PfCLK-inhibiting compounds are initial attempts to determine putative antimalarial compounds targeting the PfCLKs. Moreover, these results provide an effective means to generate chemical kinase KOs in order to phenotypically study the role of the PfCLKs especially in splicing events and mRNA metabolism. This approach of functionally characterizing the CLKs in P. falciparum is of particular interest since the malarial spliceosome is still poorly understood and will gain further insight into the parasite splicing machinery.}, subject = {Plasmodium falciparum}, language = {en} } @phdthesis{Agarwal2010, author = {Agarwal, Shruti}, title = {Functional characterization of four CDK-like kinases and one Calmodulin-dependent kinase of the human malaria parasite, Plasmodium falciparum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48522}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Malaria still persists as one of the deadliest infectious disease in addition to AIDS and tuberculosis. lt is a leading cause of high mortality and morbidity rates in the developing world despite of groundbreaking research on global eradication of the disease initiated by WHO, about half a century ago. Lack of a commercially available vaccine and rapid spread of drug resistance have hampered the attempts of extinguishing malaria, which still leads to an annual death toll of about one million people. Resistance to anti-malarial compounds thus renders search for new target proteins imperative. The kinome of the human malaria parasite Plasmodium falciparum comprises representatives of most eukaryotic protein kinase groups, including kinases which regulate proliferation and differentiation processes. Several reports till date have suggested involvement of parasite kinases in the human host and as well as in the mosquito vector. Kinases essential for life cycle stages of the parasite represent promising targets for anti-malarial compounds thus, provoking characterization of additional malarial kinases. Despite extensive research on most plasmodial enzymes, very little information is available regarding the four identified members of the cyclin dependent kinase like kinase (CLK) family. Thus, the present thesis dealt with the functional characterization of four members of the PfCLK kinase family of the parasite denoted as PfCLK-1/Lammer, PfCLK-2, PfCLK-3 and PfCLK-4 with a special focus on the first two kinases. Additionally, one Ca2+/Calmodulin dependent putative kinase-related protein, PfPKRP, presumed to be involved in sexual stage development of the parasite, was investigated for its expression in the life cycle of the parasite. In other eukaryotes, CLK kinases regulate mRNA splicing through phosphorylation of Serine/Arginine-rich proteins. Transcription analysis revealed abundance of PfCLK kinase genes throughout the asexual blood stages and in gametocytes. By reverse genetics approach it was demonstrated that all four kinases are essential for completion of the asexual replication cycle of P. falciparum. PfCLK 1/Lammer possesses two nuclear localization signals and PfCLK-2 possesses one of these signals upstream of the C-terminal catalytic domains. Protein level expression and sub-cellular localization of the two kinases was determined by generation of antiserum directed against the kinase domains of the respective kinase. Indirect immunofluorescence, Western blot and electron microscopy data confirm that the kinases are primarily localized in the parasite nucleus, and in vitro assays show that both enzymes are associated with phosphorylation activity. Finally, mass spectrometric analysis of co immunoprecipitated proteins shows interactions of the two PfCLK kinases with proteins, which have putative nuclease, phosphatase or helicase functions. PfPKRP on the other hand is predominantly expressed during gametocyte differentiation as identified from transcriptional analysis. Antiserum directed against the catalytic domain of PfPKRP detected the protein expression profile in both asexual and gametocyte parasite lysates. Via immunofluorescence assay, the kinase was localized in the parasite cytoplasm in a punctuated manner, mostly in the gametocyte stages. Reverse genetics resulted in the generation of PfPKRP gene-disruptant parasites, thus demonstrating that unlike CLK kinases, PfPKRP is dispensable for asexual parasite survival and hence might have crucial role in sexual development of the parasite. On one hand, characterization of PfCLK kinases exemplified the kinases involved in parasite replication cycle. Successful gene-disruption and protein expression of PfPKRP kinase on the other hand, demonstrated a role of the kinase in sexual stage development of the parasite. Both kinase families therefore, represent potential candidates for anti-plasmodial compounds.}, subject = {Plasmodium falciparum}, language = {en} } @phdthesis{Hanisch2006, author = {Hanisch, Anja}, title = {Regulation of mitotic progression : Focus on Plk1 function and the novel Ska complex at kinetochores}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21467}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {During mitosis the duplicated chromosomes have to be faithfully segregated into the nascent daughter cells in order to maintain genomic stability. This critical process is dependent on the rearrangement of the interphase microtubule (MT) network, resulting in the formation of a bipolar mitotic spindle. For proper chromosome segregation all chromosomes have to become connected to MTs emanating from opposite spindle poles. The MT attachment sites on the chromosomes are the kinetochores (KTs), which are also required to monitor the integrity of KT-MT interactions via the spindle assembly checkpoint (SAC). The first part of this work concerns the action of Polo-like kinase 1 (Plk1). Plk1 is one of the most prominent mitotic kinases and is involved in the regulation of multiple essential steps during mitosis consistent with its dynamic localisation to spindle poles, KTs and the central spindle. Despite a nice model of Plk1 targeting to different mitotic structures via its phosphopeptide binding Polo-box domain (PBD), the exact molecular details of Plk1 functioning, in particular at the KTs, remain obscure. By two different approaches we obtained cells with an unlocalised Plk1 kinase activity: first by generating stable HeLa S3 cell lines, which upon induction expressed the PBD and thus displaced endogenous Plk1 from its sites of action. Secondly, by rescuing cells RNAi-depleted of Plk1 with the catalytic Plk1 domain only. Centrosome maturation, bipolar spindle assembly and loss of cohesion between the chromatid arms proceeded normally in either cells, in contrast to Plk1-depleted cells, arguing that PBD-mediated targeting of Plk1 is less critical for the tested functions. Remarkably, however, both the PBD expressing as well as the Plk1-depleted cells rescued with the catalytic domain of Plk1 arrested in early mitosis in a SAC-dependent manner with uncongressed chromosomes. These data disclose a so far unrecognised role of Plk1 in proper chromosome congression and point at a particular requirement for PBD-mediated localised Plk1 activity at the KTs. In the second part of the thesis, we characterised a novel spindle and KT associated protein, termed Ska1, which was originally identified in a spindle inventory. Ska1 associated with KTs following MT attachment during prometaphase and formed a complex with at least another novel protein of identical localisation, called Ska2. Ska1 was required for Ska2 stability in vivo and depletion of either Ska1 or Ska2 resulted in the loss of both proteins from the KTs. The absence of Ska proteins did not disrupt overall KT structure but most strikingly induced cells to undergo a prolonged SAC-dependent delay in a metaphase-like state. The delay was characterised by weakened kinetochore-fibre stability, recruitment of Mad2 protein to a few KTs and the occasional loss of individual chromosomes from the metaphase plate. These data indicate that the Ska1/2 complex plays a critical role in the maintenance of a KT-MT attachments and/or SAC silencing.}, subject = {Mitose}, language = {en} }