@article{PoethkePfenningHovestadt2007, author = {Poethke, Hans J. and Pfenning, Brenda and Hovestadt, Thomas}, title = {The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48225}, year = {2007}, abstract = {Questions: What are the relative contributions of kin selection and individual selection to the evolution of dispersal rates in fragmented landscapes? How do environmental parameters influence the relative contributions of both evolutionary forces? Features of the model: Individual-based simulation model of a metapopulation. Logistic local growth dynamics and density-dependent dispersal. An optional shuffling algorithm allows the continuous destruction of any genetic structure in the metapopulation. Ranges of key variables: Depending on dispersal mortality (0.05-0.4) and the strength of environmental fluctuations, mean dispersal probability varied between 0.05 and 0.5. Conclusions: For local population sizes of 100 individuals, kin selection alone could account for dispersal probabilities of up to 0.1. It may result in a ten-fold increase of optimal dispersal rates compared with those predicted on the basis of individual selection alone. Such a substantial contribution of kin selection to dispersal is restricted to cases where the overall dispersal probabilities are small (textless 0.1). In the latter case, as much as 30\% of the total fitness of dispersing individuals could arise from the increased reproduction of kin left in the natal patch.}, language = {en} } @article{SianHulsmannRiederer2021, author = {Sian-Hulsmann, Jeswinder and Riederer, Peter}, title = {The nigral coup in Parkinson's Disease by α-synuclein and its associated rebels}, series = {Cells}, volume = {10}, journal = {Cells}, number = {3}, issn = {2073-4409}, doi = {10.3390/cells10030598}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234073}, year = {2021}, abstract = {The risk of Parkinson's disease increases with age. However, the etiology of the illness remains obscure. It appears highly likely that the neurodegenerative processes involve an array of elements that influence each other. In addition, genetic, endogenous, or exogenous toxins need to be considered as viable partners to the cellular degeneration. There is compelling evidence that indicate the key involvement of modified α-synuclein (Lewy bodies) at the very core of the pathogenesis of the disease. The accumulation of misfolded α-synuclein may be a consequence of some genetic defect or/and a failure of the protein clearance system. Importantly, α-synuclein pathology appears to be a common denominator for many cellular deleterious events such as oxidative stress, mitochondrial dysfunction, dopamine synaptic dysregulation, iron dyshomeostasis, and neuroinflammation. These factors probably employ a common apoptotic/or autophagic route in the final stages to execute cell death. The misfolded α-synuclein inclusions skillfully trigger or navigate these processes and thus amplify the dopamine neuron fatalities. Although the process of neuroinflammation may represent a secondary event, nevertheless, it executes a fundamental role in neurodegeneration. Some viral infections produce parkinsonism and exhibit similar characteristic neuropathological changes such as a modest brain dopamine deficit and α-synuclein pathology. Thus, viral infections may heighten the risk of developing PD. Alternatively, α-synuclein pathology may induce a dysfunctional immune system. Thus, sporadic Parkinson's disease is caused by multifactorial trigger factors and metabolic disturbances, which need to be considered for the development of potential drugs in the disorder.}, language = {en} } @article{BremGruenblattDrechsleretal.2014, author = {Brem, Silvia and Gr{\"u}nblatt, Edna and Drechsler, Renate and Riederer, Peter and Walitza, Susanne}, title = {The neurobiological link between OCD and ADHD}, series = {Attention Deficit and Hyperactivity Disorders}, volume = {6}, journal = {Attention Deficit and Hyperactivity Disorders}, number = {3}, doi = {10.1007/s12402-014-0146-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121312}, pages = {175-202}, year = {2014}, abstract = {Obsessive compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) are two of the most common neuropsychiatric diseases in paediatric populations. The high comorbidity of ADHD and OCD with each other, especially of ADHD in paediatric OCD, is well described. OCD and ADHD often follow a chronic course with persistent rates of at least 40-50 \%. Family studies showed high heritability in ADHD and OCD, and some genetic findings showed similar variants for both disorders of the same pathogenetic mechanisms, whereas other genetic findings may differentiate between ADHD and OCD. Neuropsychological and neuroimaging studies suggest that partly similar executive functions are affected in both disorders. The deficits in the corresponding brain networks may be responsible for the perseverative, compulsive symptoms in OCD but also for the disinhibited and impulsive symptoms characterizing ADHD. This article reviews the current literature of neuroimaging, neurochemical circuitry, neuropsychological and genetic findings considering similarities as well as differences between OCD and ADHD.}, language = {en} } @article{MergetKoetschanHackletal.2012, author = {Merget, Benjamin and Koetschan, Christian and Hackl, Thomas and F{\"o}rster, Frank and Dandekar, Thomas and M{\"u}ller, Tobias and Schultz, J{\"o}rg and Wolf, Matthias}, title = {The ITS2 Database}, series = {Journal of Visual Expression}, volume = {61}, journal = {Journal of Visual Expression}, number = {e3806}, doi = {10.3791/3806}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124600}, year = {2012}, abstract = {The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation. The ITS2 Database presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank accurately reannotated. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE and ProfDistS for multiple sequence-structure alignment calculation and Neighbor Joining tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.}, language = {en} } @article{KuenstnerHoffmannFraseretal.2016, author = {K{\"u}nstner, Axel and Hoffmann, Margarete and Fraser, Bonnie A. and Kottler, Verena A. and Sharma, Eshita and Weigel, Detlef and Dreyer, Christine}, title = {The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0169087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166755}, pages = {e0169087}, year = {2016}, abstract = {For over a century, the live bearing guppy, Poecilia reticulata, has been used to study sexual selection as well as local adaptation. Natural guppy populations differ in many traits that are of intuitively adaptive significance such as ornamentation, age at maturity, brood size and body shape. Water depth, light supply, food resources and predation regime shape these traits, and barrier waterfalls often separate contrasting environments in the same river. We have assembled and annotated the genome of an inbred single female from a high-predation site in the Guanapo drainage. The final assembly comprises 731.6 Mb with a scaffold N50 of 5.3 MB. Scaffolds were mapped to linkage groups, placing 95\% of the genome assembly on the 22 autosomes and the X-chromosome. To investigate genetic variation in the population used for the genome assembly, we sequenced 10 wild caught male individuals. The identified 5 million SNPs correspond to an average nucleotide diversity (π) of 0.0025. The genome assembly and SNP map provide a rich resource for investigating adaptation to different predation regimes. In addition, comparisons with the genomes of other Poeciliid species, which differ greatly in mechanisms of sex determination and maternal resource allocation, as well as comparisons to other teleost genera can begin to reveal how live bearing evolved in teleost fish.}, language = {en} } @article{KuehnischHerbstAl‐Wakeel‐Marquardetal.2019, author = {K{\"u}hnisch, Jirko and Herbst, Christopher and Al-Wakeel-Marquard, Nadya and Dartsch, Josephine and Holtgrewe, Manuel and Baban, Anwar and Mearini, Giulia and Hardt, Juliane and Kolokotronis, Konstantinos and Gerull, Brenda and Carrier, Lucie and Beule, Dieter and Schubert, Stephan and Messroghli, Daniel and Degener, Franziska and Berger, Felix and Klaassen, Sabine}, title = {Targeted panel sequencing in pediatric primary cardiomyopathy supports a critical role of TNNI3}, series = {Clinical Genetics}, volume = {96}, journal = {Clinical Genetics}, number = {6}, doi = {10.1111/cge.13645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213958}, pages = {549 -- 559}, year = {2019}, abstract = {The underlying genetic mechanisms and early pathological events of children with primary cardiomyopathy (CMP) are insufficiently characterized. In this study, we aimed to characterize the mutational spectrum of primary CMP in a large cohort of patients ≤18 years referred to a tertiary center. Eighty unrelated index patients with pediatric primary CMP underwent genetic testing with a panel-based next-generation sequencing approach of 89 genes. At least one pathogenic or probably pathogenic variant was identified in 30/80 (38\%) index patients. In all CMP subgroups, patients carried most frequently variants of interest in sarcomere genes suggesting them as a major contributor in pediatric primary CMP. In MYH7, MYBPC3, and TNNI3, we identified 18 pathogenic/probably pathogenic variants (MYH7 n = 7, MYBPC3 n = 6, TNNI3 n = 5, including one homozygous (TNNI3 c.24+2T>A) truncating variant. Protein and transcript level analysis on heart biopsies from individuals with homozygous mutation of TNNI3 revealed that the TNNI3 protein is absent and associated with upregulation of the fetal isoform TNNI1. The present study further supports the clinical importance of sarcomeric mutation—not only in adult—but also in pediatric primary CMP. TNNI3 is the third most important disease gene in this cohort and complete loss of TNNI3 leads to severe pediatric CMP.}, language = {en} } @article{DoerhoeferLammertKraneetal.2013, author = {D{\"o}rh{\"o}fer, Lena and Lammert, Alexander and Krane, Vera and Gorski, Mathias and Banas, Bernhard and Wanner, Christoph and Kr{\"a}mer, Bernhard K. and Heid, Iris M. and B{\"o}ger, Carsten A.}, title = {Study design of DIACORE (DIAbetes COhoRtE) - a cohort study of patients with diabetes mellitus type 2}, series = {BMC Medical Genetics}, volume = {14}, journal = {BMC Medical Genetics}, number = {25}, issn = {1471-2350}, doi = {10.1186/1471-2350-14-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122040}, year = {2013}, abstract = {Background: Diabetes mellitus type 2 (DM2) is highly associated with increased risk for chronic kidney disease (CKD), end stage renal disease (ESRD) and cardiovascular morbidity. Epidemiological and genetic studies generate hypotheses for innovative strategies in DM2 management by unravelling novel mechanisms of diabetes complications, which is essential for future intervention trials. We have thus initiated the DIAbetes COhoRtE study (DIACORE). Methods: DIACORE is a prospective cohort study aiming to recruit 6000 patients of self-reported Caucasian ethnicity with prevalent DM2 for at least 10 years of follow-up. Study visits are performed in University-based recruiting clinics in Germany using standard operating procedures. All prevalent DM2 patients in outpatient clinics surrounding the recruiting centers are invited to participate. At baseline and at each 2-year follow-up examination, patients are subjected to a core phenotyping protocol. This includes a standardized online questionnaire and physical examination to determine incident micro-and macrovascular DM2 complications, malignancy and hospitalization, with a primary focus on renal events. Confirmatory outcome information is requested from patient records. Blood samples are obtained for a centrally analyzed standard laboratory panel and for biobanking of aliquots of serum, plasma, urine, mRNA and DNA for future scientific use. A subset of the cohort is subjected to extended phenotyping, e. g. sleep apnea screening, skin autofluorescence measurement, non-mydriatic retinal photography and non-invasive determination of arterial stiffness. Discussion: DIACORE will enable the prospective evaluation of factors involved in DM2 complication pathogenesis using high-throughput technologies in biosamples and genetic epidemiological studies.}, language = {en} } @article{BoelchJansenMeffertetal.2015, author = {Boelch, S. P. and Jansen, H. and Meffert, R. H. and Frey, S. P.}, title = {Six Sesamoid Bones on Both Feet: Report of a Rare Case}, series = {Journal of Clinical and Diagnostic Research}, volume = {9}, journal = {Journal of Clinical and Diagnostic Research}, number = {8}, doi = {10.7860/JCDR/2015/12842.6394}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126073}, pages = {RD04-RD05}, year = {2015}, abstract = {There is a variation of the total number of distinct bones in the human in the literature. This difference is mainly caused by the variable existence of sesamoid bones. Sesamoid bones at the first MTP are seen regularly. In contrast additional sesamoid bones at the divond to fifth MTP are rare. We report a case of additional sesamoid bones at every metatarsophalangeal joint (MTP) of both feet. A 22-year-old female Caucasian presented with weight-dependent pain of the divond MTP of the left foot. In the radiographs of both feet additional sesamoid bones at every MTP could be seen. This case reports a very rare variation in human anatomy. A similar case has not been displayed to the academic society and therefore should be acknowledged.}, language = {en} } @article{WegertVokuhlCollordetal.2018, author = {Wegert, Jenny and Vokuhl, Christian and Collord, Grace and Del Castillo Velasco-Herrera, Martin and Farndon, Sarah J. and Guzzo, Charlotte and Jorgensen, Mette and Anderson, John and Slater, Olga and Duncan, Catriona and Bausenwein, Sabrina and Streitenberger, Heike and Ziegler, Barbara and Furtw{\"a}ngler, Rhoikos and Graf, Norbert and Stratton, Michael R. and Campbell, Peter J. and Jones, David TW and Koelsche, Christian and Pfister, Stefan M. and Mifsud, William and Sebire, Neil and Sparber-Sauer, Monika and Koscielniak, Ewa and Rosenwald, Andreas and Gessler, Manfred and Behjati, Sam}, title = {Recurrent intragenic rearrangements of EGFR and BRAF in soft tissue tumors of infants}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-04650-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233446}, year = {2018}, abstract = {Soft tissue tumors of infancy encompass an overlapping spectrum of diseases that pose unique diagnostic and clinical challenges. We studied genomes and transcriptomes of cryptogenic congenital mesoblastic nephroma (CMN), and extended our findings to five anatomically or histologically related soft tissue tumors: infantile fibrosarcoma (IFS), nephroblastomatosis, Wilms tumor, malignant rhabdoid tumor, and clear cell sarcoma of the kidney. A key finding is recurrent mutation of EGFR in CMN by internal tandem duplication of the kinase domain, thus delineating CMN from other childhood renal tumors. Furthermore, we identify BRAF intragenic rearrangements in CMN and IFS. Collectively these findings reveal novel diagnostic markers and therapeutic strategies and highlight a prominent role of isolated intragenic rearrangements as drivers of infant tumors.}, language = {en} } @article{IslesIngasonLowtheretal.2016, author = {Isles, Anthony R. and Ingason, Andr{\´e}s and Lowther, Chelsea and Walters, James and Gawlick, Micha and St{\"o}ber, Gerald and Rees, Elliott and Martin, Joanna and Little, Rosie B. and Potter, Harry and Georgieva, Lyudmila and Pizzo, Lucilla and Ozaki, Norio and Aleksic, Branko and Kushima, Itaru and Ikeda, Masashi and Iwata, Nakao and Levinson, Douglas F. and Gejman, Pablo V. and Shi, Jianxin and Sanders, Alan R. and Duan, Jubao and Willis, Joseph and Sisodiya, Sanjay and Costain, Gregory and Werge, Thomas M. and Degenhardt, Franziska and Giegling, Ina and Rujescu, Dan and Hreidarsson, Stefan J. and Saemundsen, Evald and Ahn, Joo Wook and Ogilvie, Caroline and Girirajan, Santhosh D. and Stefansson, Hreinn and Stefansson, Kari and O'Donovan, Michael C. and Owen, Michael J. and Bassett, Anne and Kirov, George}, title = {Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {5}, doi = {10.1371/journal.pgen.1005993}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166706}, pages = {e1005993}, year = {2016}, abstract = {Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76\% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033\% compared to 0.0069\% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50\% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.}, language = {en} }