@article{StraubeReifRichteretal.2014, author = {Straube, B. and Reif, A. and Richter, J. and Lueken, U. and Weber, H. and Arolt, V. and Jansen, A. and Zwanzger, P. and Domschke, K. and Pauli, P. and Konrad, C. and Gerlach, A. L. and Lang, T. and Fydrich, T. and Alpers, G. W. and Stroehle, A. and Wittmann, A. and Pfleiderer, B. and Wittchen, H.-U. and Hamm, A. and Deckert, J. and Kircher, T.}, title = {The functional - 1019C/G HTR1A polymorphism and mechanisms of fear}, series = {Translational Psychiatry}, volume = {4}, journal = {Translational Psychiatry}, issn = {2158-3188}, doi = {10.1038/tp.2014.130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114369}, pages = {e490}, year = {2014}, abstract = {Serotonin receptor 1A gene (HTR1A) knockout mice show pronounced defensive behaviour and increased fear conditioning to ambiguous conditioned stimuli. Such behaviour is a hallmark of pathological human anxiety, as observed in panic disorder with agoraphobia (PD/AG). Thus, variations in HTR1A might contribute to neurophysiological differences within subgroups of PD/AG patients. Here, we tested this hypothesis by combining genetic with behavioural techniques and neuroimaging. In a clinical multicentre trial, patients with PD/AG received 12 sessions of manualized cognitive-behavioural therapy (CBT) and were genotyped for HTR1A rs6295. In four subsamples of this multicentre trial, exposure behaviour (n = 185), defensive reactivity measured using a behavioural avoidance test (BAT; before CBT: n = 245; after CBT: n = 171) and functional magnetic resonance imaging (fMRI) data during fear conditioning were acquired before and after CBT (n = 39). HTR1A risk genotype (GG) carriers more often escaped during the BAT before treatment. Exploratory fMRI results suggest increased activation of the amygdala in response to threat as well as safety cues before and after treatment in GG carriers. Furthermore, GG carriers demonstrated reduced effects of CBT on differential conditioning in regions including the bilateral insulae and the anterior cingulate cortex. Finally, risk genotype carriers demonstrated reduced self-initiated exposure behaviour to aversive situations. This study demonstrates the effect of HTR1A variation on defensive behaviour, amygdala activity, CBT-induced neural plasticity and normalization of defence behaviour in PD/AG. Our results, therefore, translate evidence from animal studies to humans and suggest a central role for HTR1A in differentiating subgroups of patients with anxiety disorders.}, language = {en} } @article{AraragiMlinarBaccinietal.2013, author = {Araragi, Naozumi and Mlinar, Boris and Baccini, Gilda and Gutknecht, Lise and Lesch, Klaus-Peter and Corradetti, Renato}, title = {Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis}, series = {Frontiers in Neuropharmacology}, journal = {Frontiers in Neuropharmacology}, doi = {10.3389/fphar.2013.00097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97098}, year = {2013}, abstract = {Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert-/-) and tryptophan hydroxylase-2 knockout (Tph2-/-) mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2-/- mice and Sert-/- mice, respectively. While 5-HT neurons from Tph2-/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert-/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2-/- and Sert-/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.}, language = {en} }