@phdthesis{Vansynghel2023, author = {Vansynghel, Justine}, title = {Pollination and pest control along gradients of shade cover and forest distance in Peruvian cacao agroforestry landscapes}, doi = {10.25972/OPUS-28157}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281574}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Chapter I - Introduction Global trade of beans of the cacao tree (Theobroma cacao), of which chocolate is produced, contributes to the livelihoods of millions of smallholder farmers. The understorey tree is native to South America but is nowadays cultivated in many tropical regions. In Peru, a South American country with a particularly high cacao diversity, it is common to find the tree cultivated alongside non-crop trees that provide shade, in so-called agroforestry systems. Because of the small scale and low management intensity of such systems, agroforestry is one of the most wildlife-friendly land-use types, harbouring the potential for species conservation. Studying wildlife-friendly land-use is of special importance for species conservation in biodiversity-rich tropical regions such as Peru, where agricultural expansion and intensification are threatening biodiversity. Moreover, there is a growing body of evidence that shows co-occurrence of high biodiversity levels and high yield in wildlife-friendly cacao farming. Yet studies are restricted to non-native cacao countries, and since patterns might be different among continents, it is important to improve knowledge on wildlife-friendly agroforestry in native countries. Because studies of wildlife-friendly cultivation processes are still largely lacking for South America, we set out to study multiple aspects of cacao productivity in agroforests in Peru, part of cacao´s region of origin. The natural pollination process of cacao, which is critically understudied, was investigated by trapping flower visitors and studying pollen deposition from macrophotographs (Chapter II). Next, we excluded birds, bats, ants and flying insects and squirrels from cacao trees in a full-factorial field experiment and quantified these animals´ contribution to cacao fruit set, fruit loss and yield (Chapter III). Lastly, we aimed to assess whether fruit quantity and quality of native cacao increases through manually supplementing pollen (Chapter II and IV), and whether microclimatic conditions and the genetic background of the studied varieties limit fruit set (Chapter IV). Chapter II - Cacao flower visitation: Low pollen deposition, low fruit set and dominance of herbivores Given the importance of cacao pollination for the global chocolate production, it is remarkable that fruit set limitations are still understudied. Knowledge on flower visitation and the effect of landscape context and local management are lacking, especially in the crop's region of origin. Moreover, the role of pollen deposition in limiting fruit set as well as the benefits of hand pollination in native cacao are unknown. In this chapter, we aimed to close the current knowledge gaps on cacao pollination biology and sampled flower visitors in 20 Peruvian agroforests with native cacao, along gradients of shade cover and forest distance. We also assessed pollen quantities and compared fruit set between manually and naturally pollinated flowers. We found that herbivores were the most abundant flower visitors in both northern and southern Peru, but we could not conclude which insects are effective cacao pollinators. Fruit set was remarkably low (2\%) but improved to 7\% due to pollen supplementation. Other factors such as a lack of effective pollinators, genetic pollen incompatibility or resource unavailability could be causing fruit set limitations. We conclude that revealing those causes and the effective pollinators of cacao will be key to improve pollination services in cacao. Chapter III - Quantifying services and disservices provided by insects and vertebrates in cacao agroforestry landscapes Pollination and pest control, two ecosystem services that support cacao yield, are provided by insects and vertebrates. However, animals also generate disservices, and their combined contribution is still unclear. Therefore, we excluded flying insects, ants, birds and bats, and as a side effect also squirrels from cacao trees and we assessed fruit set, fruit loss and final yield. Local management and landscape context can influence animal occurrence in cacao agroforestry landscapes; therefore, shade cover and forest distance were included in the analyses. Flying insects benefitted cacao fruit set, with largest gains in agroforests with intermediate shade cover. Birds and bats were also associated with improved fruit set rates and with a 114\% increase in yield, potentially due to pest control services provided by these animals. The role of ants was complicated: these insects had a positive effect on yield, but only close to forest. We also evidenced disservices generated by ants and squirrels, causing 7\% and 10\% of harvest loss, respectively. Even though the benefits provided by animals outweighed the disservices, trade-offs between services and disservices still should be integrated in cacao agroforestry management. Chapter IV - Cross-pollination improves fruit set and yield quality of Peruvian native cacao Because yields of the cacao tree are restricted by pollination, hand pollination has been proposed to improve yield quantity and potentially, also quality. However, low self- and cross-compatibility of native cacao, and abiotic conditions could cancel out hand pollination benefits. Yet, the impact of genetic constraints and abiotic conditions on fruit set have not been assessed in native cacao so far. To increase our understanding of the factors that limit fruit set in native cacao, we compared manual self- and cross-pollination with five native genotypes selected for their sensorial quality and simultaneously tested for effects of soil water content, temperature, and relative air humidity. We also compared quality traits between manually and naturally pollinated fruits. Success rates of self-pollination were low (0.5\%), but increased three- to eightfold due to cross-pollination, depending on the genotype of the pollen donor. Fruit set was also affected by the interaction between relative air humidity and temperature, and we found heavier and more premium seeds in fruits resulting from manual than natural pollination. Together, these findings show that reproductive traits of native cacao are constrained by genetic compatibility and abiotic conditions. We argue that because of the high costs of hand pollination, natural cross-pollination with native pollen donors should be promoted so that quality improvements can result in optimal economic gains for smallholder farmers. Chapter V - Discussion In this thesis, we demonstrated that the presence of flying insects, ants and vertebrates, local and landscape management practices, and pollen supplementation interactively affected cacao yield, at different stages of the development from flower to fruit. First, we showed that fruit set improved by intermediate shade levels and flower visitation by flying insects. Because the effective cacao pollinators remain unknown, we recommend shade cover management to safeguard fruit set rates. The importance of integrating trade-offs in wildlife-friendly management was highlighted by lower harvest losses due to ants and squirrels than the yield benefits provided by birds and bats. The maintenance of forest in the landscape might further promote occurrence of beneficial animals, because in proximity to forest, ants were positively associated with cacao yields. Therefore, an integrated wildlife-friendly farming approach in which shade cover is managed and forest is maintained or restored to optimize ecosystem service provision, while minimizing fruit loss, might benefit yields of native cacao. Finally, manual cross-pollination with native genotypes could be recommended, due to improved yield quantity and quality. However, large costs associated with hand pollination might cancel out these benefits. Instead, we argue that in an integrated management, natural cross-pollination should be promoted by employing compatible genotypes in order to improve yield quantity and quality of native cacao.}, subject = {Kakao}, language = {en} } @phdthesis{Sommerlandt2017, author = {Sommerlandt, Frank M. J.}, title = {Mechanisms of visual memory formation in bees: About immediate early genes and synaptic plasticity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136997}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Animals form perceptual associations through processes of learning, and retain that information through mechanisms of memory. Honeybees and bumblebees are classic models for insect perception and learning, and despite their small brains with about one million neurons, they are organized in highly social colonies and possess an astonishing rich behavioral repertoire including navigation, communication and cognition. Honeybees are able to harvest hundreds of morphologically divergent flower types in a quick and efficient manner to gain nutrition and, back in the hive, communicate discovered food sources to nest mates. To accomplish such complex tasks, bees must be equipped with diverse sensory organs receptive to stimuli of different modalities and must be able to associatively learn and memorize the acquired information. Particularly color vision plays a prominent role, e.g. in navigation along landmarks and when bees identify inflorescences by their color signals. Once acquired, bees are known to retain visual information for days or even months. Numerous studies on visual perception and color vision have been conducted in the past decades and largely revealed the information processing pathways in the brain. In contrast, there are no data available on how the brain may change in the course of color learning experience and whether pathways differ for coarse and fine color learning. Although long-term memory (LTM) storage is assumed to generally include reorganization of the neuronal network, to date it is unclear where in the bee brain such changes occur in the course of color learning and whether visual memories are stored in one particular site or decentrally distributed over different brain domains. The present dissertation research aimed to dissect the visual memory trace in bees that is beyond mere stimulus processing and therefore two different approaches were elaborated: first, the application of immediate early genes (IEG) as genetic markers for neuronal activation to localize early processes underlying the formation of a stable LTM. Second, the analysis of late consequences of memory formation, including synaptic reorganization in central brain areas and dependencies of color discrimination complexity. Immediate early genes (IEG) are a group of rapidly and transiently expressed genes that are induced by various types of cellular stimulation. A great number of different IEGs are routinely used as markers for the localization of neuronal activation in vertebrate brains. The present dissertation research was dedicated to establish this approach for application in bees, with focus on the candidate genes Amjra and Amegr, which are orthologous to the two common vertebrate IEGs c-jun and egr-1. First the general requirement of gene transcription for visual LTM formation was proved. Bumblebees were trained in associative proboscis extension response (PER) conditioning to monochromatic light and subsequently injected with an inhibitor of gene transcription. Memory retention tests at different intervals revealed that gene transcription is not required for the formation of a mid-term memory, but for stable LTM. Next, the appliance of the candidate genes was validated. Honeybees were exposed to stimulation with either alarm pheromone or a light pulse, followed by qPCR analysis of gene expression. Both genes differed in their expression response to sensory exposure: Amjra was upregulated in all analyzed brain parts (antennal lobes, optic lobes and mushroom bodies, MB), independent from stimulus modality, suggesting the gene as a genetic marker for unspecific general arousal. In contrast, Amegr was not significantly affected by mere sensory exposure. Therefore, the relevance of associative learning on Amegr expression was assessed. Honeybees were trained in visual PER conditioning followed by a qPCR-based analysis of the expression of all three Amegr isoforms at different intervals after conditioning. No learning-dependent alteration of gene expression was observed. However, the presence of AmEgr protein in virtually all cerebral cell nuclei was validated by immunofluorescence staining. The most prominent immune-reactivity was detected in MB calyx neurons. Analysis of task-dependent neuronal correlates underlying visual long-term memory was conducted in free-flying honeybees confronted with either absolute conditioning to one of two perceptually similar colors or differential conditioning with both colors. Subsequent presentation of the two colors in non-rewarded discrimination tests revealed that only bees trained with differential conditioning preferred the previously learned color. In contrast, bees of the absolute conditioning group chose randomly among color stimuli. To investigate whether the observed difference in memory acquisition is also reflected at the level of synaptic microcircuits, so called microglomeruli (MG), within the visual domains of the MB calyces, MG distribution was quantified by whole-mount immunostaining three days following conditioning. Although learning-dependent differences in neuroarchitecture were absent, a significant correlation between learning performance and MG density was observed. Taken together, this dissertation research provides fundamental work on the potential use of IEGs as markers for neuronal activation and promotes future research approaches combining behaviorally relevant color learning tests in bees with examination of the neuroarchitecture to pave the way for unraveling the visual memory trace.}, subject = {Biene}, language = {en} } @phdthesis{Hendriksma2011, author = {Hendriksma, Harmen P.}, title = {Non-target effects of a multiple insect resistant Bt-maize on the honey bee (Apis mellifera L.)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70304}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Neue methodische Entwicklungen zur Untersuchung der Ursachen des weltweit beobachteten Bienensterbens sind n{\"o}tig, um die lebenswichtige {\"O}kosystemdienstleistung der Best{\"a}ubung zu gew{\"a}hrleisten. Die {\"o}kologisch und wirtschaftlich bedeutsame Honigbiene (Apis mellifera) ist ein wichtiger Nichtziel-Organismus im Zulassungsverfahren f{\"u}r gentechnisch ver{\"a}nderte Pflanzen. Bisher sind vor allem Methoden zur Testung erwachsener Bienen unter Laborbedingungen verwendet worden, aber f{\"u}r eine Risikobewertung mit Hilfe von standardisierten Bienenkolonien oder in vitro gez{\"u}chteten Honigbienenlarven sind keine robusten Methoden oder standardisierte Protokolle vorhanden. In dieser Arbeit wurde eine Vielzahl an neuen methodischen Ans{\"a}tzen f{\"u}r die Biosicherheitsforschung entwickelt: eine Mortalit{\"a}ts-Falle (Kapitel II), ein "Full-Life-Cycle" Test (III), eine robuste in vitro Aufzucht-Methodik (IV), ein standardisierter in vitro Test f{\"u}r Bt-Pollen (V), eine gemischte Toxizit{\"a}tspr{\"u}fung f{\"u}r transgene Reinproteine (VI) und eine {\"U}berpr{\"u}fung der Darmmikroflora sowie der Pollenverdauungrate (VII). Die Ergebnisse dieser Studien zeigten keine nachteiligen Wirkungen von Bt-Maispollen oder Bt-Reinproteinen im "Worst-Case" Szenario auf Honigbienen. In Anbetracht der Datenlage ist eine Sch{\"a}digung der Honigbiene durch den getesteten Bt-Mais Mon89034xMon88017 unwahrscheinlich. Die Anwendung der Untersuchungsmethoden in zuk{\"u}nftigen Biosicherheitsstudien f{\"u}r transgene Pflanzen wird empfohlen.}, subject = {Biene}, language = {en} } @phdthesis{Benadi2013, author = {Benadi, Gita}, title = {Linking specialisation and stability of plant-pollinator networks}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85288}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In this dissertation, I examine the relationship between specialisation and stability of plant-pollinator networks, with a focus on two issues: Diversity maintenance in animal-pollinated plant communities and robustness of plant-pollinator systems against disturbances such as those caused by anthropogenic climate change. Chapter 1 of this thesis provides a general introduction to the concepts of ecological stability and specialisation with a focus on plant-pollinator systems, and a brief outline of the following chapters. Chapters 2-5 each consist of a research article addressing a specific question. While chapters 2 and 3 deal with different aspects of diversity maintenance in animal-pollinated plant communities, chapters 4 and 5 are concerned with the consequences of climate change in the form of temporary disturbances caused by extreme climatic events (chapter 4) and shifts in phenology of plants and pollinators (chapter 5). From a methodological perspective, the first three articles (chapter 2-4) can be grouped together as they all employ mathematical models of plant-pollinator systems, whereas chapter 5 describes an empirical study of plant-pollinator interactions along an altitudinal gradient in the Alps. The final chapter (6) provides a review of current knowledge on each of the two main themes of this thesis and places the findings of the four research articles in the context of related studies.}, subject = {Theoretische {\"O}kologie}, language = {en} }