@phdthesis{Balasubramanian2018, author = {Balasubramanian, Srikkanth}, title = {Novel anti-infectives against pathogenic bacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163882}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Marine sponge-associated actinomycetes are reservoirs of diverse natural products with novel biological activities. Their antibiotic potential has been well explored against a range of Gram positive and negative bacteria. However, not much is known about their anti-infective or anti-virulence potential against human pathogens. This Ph.D. project aimed to investigate the anti-infective (anti-Shiga toxin and anti-biofilm) potential of sponge-derived actinobacteria through identification and isolation of their bioactive metabolites produced and characterizing their mechanism of action by transcriptomics. This thesis is divided into three studies with the overall objective of exploring the anti-infective efficacy of actinomycetes-derived extracts and compound(s) that could possibly be used as future therapeutics. The first study deals with investigation on the anti-Shiga toxin effects of sponge-associated actinomycetes. Diarrheal infections pose a huge burden in several developing and developed countries. Diarrheal outbreaks caused by Enterohemorrhagic Escherichia coli (EHEC) could lead to life-threatening complications like gastroenteritis and haemolytic uremic syndrome (HUS) if left untreated. Shiga toxin (Stx) produced by EHEC is a major virulence factor that negatively affects the human cells, leading them to death via apoptosis. Antibiotics are not prescribed against EHEC infections since they may enhance the risk of development of HUS by inducing the production and release of Stx from disintegrating bacteria and thereby, worsening the complications. Therefore, an effective drug that blocks the Stx production without affecting the growth needs to be urgently developed. In this study, the inhibitory effects of 194 extracts and several compounds originating from a collection of marine sponge-derived actinomycetes were evaluated against the Stx production in EHEC strain EDL933 with the aid of Ridascreen® Verotoxin ELISA assay kit. It was found that treatment with the extracts did not lead to significant reduction in Stx production. However, strepthonium A isolated from the culture of Streptomyces sp. SBT345 (previously cultivated from the Mediterranean sponge Agelas oroides) reduced the Stx production (at 80 μM concentration) in EHEC strain EDL933 without affecting the bacterial growth. The structure of strepthonium A was resolved by spectroscopic analyses including 1D and 2D-NMR, as well as ESI-HRMS and ESI-HRMS2 experiments. This demonstrated the possible application of strepthonium A in restraining EHEC infections. VI In the second study, the effect of marine sponge-associated actinomycetes on biofilm formation of staphylococci was assessed. Medical devices such as contact lenses, metallic implants, catheters, pacemakers etc. are ideal ecological niches for formation of bacterial biofilms, which thereby lead to device-related infections. Bacteria in biofilms are multiple fold more tolerant to the host immune responses and conventional antibiotics, and hence are hard-to-treat. Here, the anti-biofilm potential of an organic extract derived from liquid fermentation of Streptomyces sp. SBT343 (previously cultivated from the Mediterranean sponge Petrosia ficiformis) was reported. Results obtained in vitro demonstrated its anti-biofilm (against staphylococci) and non-toxic nature (against mouse macrophage (J774.1), fibroblast (NIH/3T3) and human corneal epithelial cell lines). Interestingly, SBT343 extract could inhibit staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces without affecting the bacterial growth. High Resolution Fourier Transform Mass Spectrometry (HR-MS) analysis indicated the complexity and the chemical diversity of components present in the extract. Preliminary physio-chemical characterization unmasked the heat stable and non-proteinaceous nature of the active component(s) in the extract. Finally, fractionation experiments revealed that the biological activity was due to synergistic effects of multiple components present in the extract. In the third study, anti-biofilm screening of 50 organic extracts generated from solid and liquid fermentation of 25 different previously characterized sponge-derived actinomycetes was carried out. This led to identification of the anti-biofilm organic extract derived from the solid culture of Streptomyces sp. SBT348 (previously cultivated from the Mediterranean sponge Petrosia ficiformis). Bioassay-guided fractionation was employed to identify the active fraction Fr 7 in the SBT348 crude extract. Further purification with semi-preparative HPLC led to isolation of the bioactive SKC1, SKC2, SKC3, SKC4 and SKC5 sub-fractions. The most active sub-fraction SKC3 was found to be a pure compound having BIC90 and MIC values of 3.95 μg/ml and 31.25 μg/ml against S. epidermidis RP62A. SKC3 had no apparent toxicity in vitro on cell lines and in vivo on the greater wax moth Galleria melonella larvae. SKC3 was stable to heat and enzymatic treatments indicating its non-proteinaceous nature. HR-MS analysis revealed the mass of SKC3 to be 1258.3 Da. Structure elucidation of SKC3 with the aid of 1D and 2D-NMR data is currently under investigation. Further, to obtain insights into the mode of action of SKC3 on S. epidermidis RP62A, RNA sequencing was done. Transcriptome data revealed that SKC3 was recognized by RP62A at 20 min and SKC3 negatively interfered with the central metabolism of staphylococci at 3 h. Taken VII together, these findings suggest that SKC3 could be a lead structure for development of new anti-staphylococcal drugs. Overall, the results obtained from this work underscore the anti-infective attributes of actinomycetes consortia associated with marine sponges, and their applications in natural product drug discovery programs.}, subject = {Marine sponges}, language = {en} } @phdthesis{Audretsch2013, author = {Audretsch, Christof}, title = {Analysing Quorum Sensing and Biofilm formation in Staphylococcus aureus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-92189}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Staphylococcus aureus (SA) causes nosocomial infections including life threatening sepsis by multi-resistant strains (MRSA). It has the ability to form biofilms to protect it from the host immune system and from anti staphylococcal drugs. Biofilm and planctonic life style is regulated by a complex Quorum-Sensing (QS) system with agr as a central regulator. To study biofilm formation and QS mechanisms in SA a Boolean network was build (94 nodes, 184 edges) including two different component systems such as agr, sae and arl. Important proteins such as Sar, Rot and SigB were included as further nodes in the model. System analysis showed there are only two stable states biofilm forming versus planctonic with clearly different subnetworks turned on. Validation according to gene expression data confirmed this. Network consistency was tested first according to previous knowledge and literature. Furthermore, the predicted node activity of different in silico knock-out strains agreed well with corresponding micro array experiments and data sets. Additional validation included the expression of further nodes (Northern blots) and biofilm production compared in different knock-out strains in biofilm adherence assays. The model faithfully reproduces the behaviour of QS signalling mutants. The integrated model allows also prediction of various other network mutations and is supported by experimental data from different strains. Furthermore, the well connected hub proteins elucidate how integration of different inputs is achieved by the QS network. For in silico as well as in vitro experiments it was found that the sae-locus is also a central modulator of biofilm production. Sae knock-out strains showed stronger biofilms. Wild type phenotype was rescued by sae complementation. To elucidate the way in which sae takes influence on biofilm formation the network was used and Venn-diagrams were made, revealing nodes regulated by sae and changed in biofilms. In these Venn-diagrams nucleases and extracellular proteins were found to be promising nodes. The network revealed DNAse to be of great importance. Therefore qualitatively the DNAse amount, produced by different SA mutants was measured, it was tried to dissolve biofilms with according amounts of DNAse and the concentration of nucleic acids, proteins and polysaccharides were measured in biofilms of different SA mutants. With its thorough validation the network model provides a powerful tool to study QS and biofilm formation in SA, including successful predictions for different knock-out mutant behaviour, QS signalling and biofilm formation. This includes implications for the behaviour of MRSA strains and mutants. Key regulatory mutation combinations (agr-, sae-, sae-/agr-, sigB+, sigB+/sae-) were directly tested in the model but also in experiments. High connectivity was a good guide to identify master regulators, whose detailed behaviour was studied both in vitro and in the model. Together, both lines of evidence support in particular a refined regulatory role for sae and agr with involvement in biofilm repression and/or SA dissemination. With examination of the composition of different mutant biofilms as well as with the examination of the reaction cascade that connects sae to the biofilm forming ability of SA and also by postulating that nucleases might play an important role in that, first steps were taken in proving and explaining regulatory links leading from sae to biofilms. Furthermore differences in biofilms of different mutant SA strains were found leading us in perspective towards a new understanding of biofilms including knowledge how to better regulate, fight and use its different properties.}, subject = {Staphylococcus aureus}, language = {en} }