@phdthesis{LangeneSoehnchen2020, author = {Lange [n{\´e} S{\"o}hnchen], Bastian}, title = {Influence of social anxiety on social attention and corresponding changes in action patterns}, doi = {10.25972/OPUS-18900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189001}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {People who suffer Social Anxiety Disorder (SAD) are under substantial personal distress and endure impaired normal functioning in at least some parts of everyday life. Next, to the personal suffering, there are also the immense public health costs to consider, as SAD is the most common anxiety disorder and thereby one of the major psychiatric disorders in general. Over the last years, fundamental research found cognitive factors as essential components in the development and maintenance of social fears. Following leading cognitive models, avoidance behaviors are thought to be an important factor in maintaining the developed social anxieties. Therefore, this thesis aims to deepen the knowledge of avoidance behaviors exhibited in social anxiety, which allows to get a better understanding of how SAD is maintained. To reach this goal three studies were conducted, each using a different research approach. In the first study cutting-edge Virtual Reality (VR) equipment was used to immerse participants in a virtual environment. In this virtual setting, High Socially Anxious (HSA) individuals and matched controls had to execute a social Approach-Avoidance Task (AAT). In the task, participants had to pass a virtual person displaying neutral or angry facial expressions. By using a highly immersive VR apparatus, the first described study took the initial step in establishing a new VR task for the implicit research on social approach-avoidance behaviors. By moving freely through a VR environment, participants experienced near real-life social situations. By tracking body and head movements, physical and attentional approach-avoidance processes were studied. The second study looked at differences in attention shifts initiated by gaze-cues of neutral or emotional faces. Comparing HSA and controls, enabled a closer look at attention re-allocation with special focus on social stimuli. Further, context conditioning was used to compare task performance in a safe and in a threatening environment. Next to behavioral performance, the study also investigated neural activity using Electroencephalography (EEG) primarily looking at the N2pc component. In the third study, eye movements of HSA and Low Socially Anxious (LSA) were analyzed using an eye-tracking apparatus while participants executed a computer task. The participants' tasks consisted of the detection of either social or non-social stimuli in complex visual settings. The study intended to compare attention shifts towards social components between these two tasks and how high levels of social anxiety influence them. In other words, the measurements of eye movements enabled the investigation to what extent social attention is task-dependent and how it is influenced by social anxiety. With the three described studies, three different approaches were used to get an in-depth understanding of what avoidance behaviors in SAD are and to which extent they are exhibited. Overall, the results showed that HSA individuals exhibited exaggerated physical and attentional avoidance behavior. Furthermore, the results highlighted that the task profoundly influences attention allocation. Finally, all evidence indicates that avoidance behaviors in SAD are exceedingly complex. They are not merely based on the fear of a particular stimulus, but rather involve highly compound cognitive processes, which surpass the simple avoidance of threatening stimuli. To conclude, it is essential that further research is conducted with special focus on SAD, its maintaining factors, and the influence of the chosen research task and method.}, subject = {Sozialangst}, language = {en} } @phdthesis{Eidel2020, author = {Eidel, Matthias T. A. M.}, title = {Training Effects of a Tactile Brain-Computer Interface System During Prolonged Use by Healthy And Motor-Impaired People}, doi = {10.25972/OPUS-20851}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208511}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Background - Brain-Computer Interfaces (BCI) enable their users to interact and communicate with the environment without requiring intact muscle control. To this end, brain activity is directly measured, digitized and interpreted by the computer. Thus, BCIs may be a valuable tool to assist severely or even completely paralysed patients. Many BCIs, however, rely on neurophysiological potentials evoked by visual stimulation, which can result in usability issues among patients with impaired vision or gaze control. Because of this, several non-visual BCI paradigms have been developed. Most notably, a recent study revealed promising results from a tactile BCI for wheelchair control. In this multi-session approach, healthy participants used the BCI to navigate a simulated wheelchair through a virtual apartment, which revealed not only that the BCI could be operated highly efficiently, but also that it could be trained over five sessions. The present thesis continues the research on this paradigm in order to - confirm its previously reported high performance levels and trainability - reveal the underlying factors responsible for observed performance increases - establish its feasibility among potential impaired end-users Methods - To approach these goals, three studies were conducted with both healthy participants and patients with amyotrophic lateral sclerosis (ALS). Brain activity during BCI operation was recorded via electroencephalography (EEG) and interpreted using a machine learning-based linear classifier. Wheelchair navigation was executed according to the classification results and visualized on a monitor. For offline statistical analysis, neurophysiological features were extracted from EEG data. Subjective data on usability were collected from all participants. Two specialized experiments were conducted to identify factors for training. Results and Discussion - Healthy participants: Results revealed positive effects of training on BCI performances and their underlying neurophysiological potentials. The paradigm was confirmed to be feasible and (for a non-visual BCI) highly efficient for most participants. However, some had to be excluded from analysis of the training effects because they could not achieve meaningful BCI control. Increased somatosensory sensitivity was identified as a possible mediator for training-related performance improvements. Participants with ALS: Out of seven patients with various stages of ALS, five could operate the BCI with accuracies significantly above chance level. Another ALS patient in a state of near-complete paralysis trained with the BCI for several months. Although no effects of training were observed, he was consistently able to operate the system above chance level. Subjective data regarding workload, satisfaction and other parameters were reported. Significance - The tactile BCI was evaluated on the example of wheelchair control. In the future, it could help impaired patients to regain some lost mobility and self-sufficiency. Further, it has the potential to be adapted to other purposes, including communication. Once visual BCIs and other assistive technologies fail for patients with (progressive) motor impairments, vision-independent paradigms such as the tactile BCI may be among the last remaining alternatives to interact with the environment. The present thesis has strongly confirmed the general feasibility of the tactile paradigm for healthy participants and provides first clues about the underlying factors of training. More importantly, the BCI was established among potential end-users with ALS, providing essential external validity.}, subject = {Myatrophische Lateralsklerose}, language = {en} } @phdthesis{Real2015, author = {Real, Ruben}, title = {Living with severe motor impairments - from consciousness to quality of life}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138562}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The impact of acquired severe motor impairments is pervasive and may lead to a complete loss of communication and voluntary motor control, rendering the patient behaviourally unresponsive. In routine clinical care it may thus be unclear, whether some of these patients are even conscious. Given that finding a cure is unlikely, care focuses on providing the best possible quality of life (QoL), and knowing its predictors might contribute to that aim. Patients who still can communicate often report a high QoL, and several predictors have been identified. However, many instruments used to assess QoL require at least residual verbal and motor abilities. Thus, a method to assess QoL independent of these requirements is desirable. In addition, many instruments assume QoL to be temporarily stable, and little information is available on predictors of instantaneous QoL, i.e. QoL as it fluctuates from moment to moment throughout the day.}, subject = {Myatrophische Lateralsklerose}, language = {en} } @phdthesis{Geissler2013, author = {Geissler, Julia Maria}, title = {Neuropsychological Endophenotypes of Attention-Deficit/Hyperactivity Disorder}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79221}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Attention-Deficit/Hyperactivity Disorder (ADHD) endophenotypes as a link between phenotype and genotype were the focus of the present work. Candidate endophenotypes were investigated via neuropsychological tasks during the simultaneous recording of a 21-channel electroencephalogram. Since endophenotypes are assumed to more closely reflect genetic variation, the influence of ADHD-associated genes Catechol-O-methyl transferase (COMT), the dopamine transporter (DAT, SLC6A3) and Latrophilin-3 (LPHN3) was analysed. Response inhibition was assessed with a cued Continuous Performance Test, for working memory we used an n-back task, sensory gating was measured via the paired clicks paradigm and response time variability (RTV) was quantified by the standard deviation of reaction times. The sample comprised medicated (N=36) and unmedicated (N=42) ADHD patients and matched control children and adolescents (N=41). The electrophysiological correlate of response inhibition was the centroid location during response execution and inhibition, and the degree of anteriorization (NGA). Sensory gating reflects the attenuation of the P50 response to the second of two auditory stimuli presented in short succession. Working memory was examined during target and non-target trials, reflecting specific information processing stages: early sensory processing (P100 and N100), selection of material (P150), memory retrieval (N300), event categorization (P300) and updating of working memory content (P450). Performance was quantified in terms of omission errors reflecting inattention and false alarms reflecting impulsivity, as well as speed and variability of reactions. Unmedicated ADHD patients had more omission errors and more variable reaction times, pointing to difficulties with attention and state regulation. NGA did not prove an optimal endophenotype candidate, since it was not yet developed in approximately half of the examined children and adolescents. It was independent of diagnosis; however ADHD risk alleles for DAT conferred lower NGA as well as more variable reaction times across groups. DAT genotype interacted with diagnosis on the level of centroid location, however, it did not manifest in performance deficits. In the case of sensory gating, homozygosity for the DAT allele associated with ADHD (10R) conferred impairment. ADHD was only relevant in participants without genetic risk, where patients without medication struggled most with suppression. In the working memory task, DAT modulated the timing of material selection in interaction with cognitive load and diagnosis: under high load unmedicated patients showed delayed responses, while under low load risk carriers on medication had faster responses than controls. Early processing and event-categorization were stronger in unmedicated ADHD with risk genotype, but dampened without risk. An interesting trend emerged for LPHN3, where carrying all risk variants was associated with higher NGA in ADHD patients irrespective of medication. This warrants further study, as the haplotype also exerts a positive influence on sensory gating specifically in patients. At the same time within the genetic risk group, unmedicated patients had the weakest NGA. However, the LPHN3 risk haplotype effected more posterior Go centroids, putatively facilitating response execution, which is supported by a higher number of false alarms. When inhibition was required, the risk variants led to more posterior centroids in unmedicated compared to medicated patients as well as controls, speaking to differences in inhibition-related brain activation. While as expected the risk haplotype led to compromised gating in unmedicated ADHD, this was reversed in healthy controls where the haplotype was acting in a protective manner with enhanced filtering. During working memory operations, the risk haplotype showed stronger N300 responses suggesting investment of more resources. While COMT did not exert an influence on NGA directly, carriers of the risk allele (met) had more posterior centroids both during response execution and inhibition, and displayed more variable responses in addition to being more prone to false alarms. Unmedicated patients produced smaller P300 during successful execution of responses than controls in absence of the risk allele, while with risk they had shorter latencies and presumably tend towards premature reactions. Additionally, it brought out impairments in sensory gating, thus making unmedicated patients less able to filter out irrelevant information, while they were able to compensate with the protective genotype. The influence of COMT on sensory gating seems to be specific for ADHD, as this gene was of no consequence in healthy controls. In the working memory task, met was beneficial for updating as reflected by P450 amplitude. In ADHD irrespective of medication COMT did not change P450 strength, but for controls this effect was observed.}, subject = {Aufmerksamkeits-Defizit-Syndrom}, language = {en} }