@article{KuaiGongDingetal.2018, author = {Kuai, Yue and Gong, Xin and Ding, Liya and Li, Fang and Lei, Lizhen and Gong, Yuqi and Liu, Qingmeng and Tan, Huajiao and Zhang, Xinxia and Liu, Dongyu and Ren, Guoping and Pan, Hongyang and Shi, Yaoyao and Berberich-Siebelt, Friederike and Ma, Zhengrong and Zhou, Ren}, title = {Wilms' tumor 1-associating protein plays an aggressive role in diffuse large B-cell lymphoma and forms a complex with BCL6 via Hsp90}, series = {Cell Communication and Signaling}, volume = {16}, journal = {Cell Communication and Signaling}, doi = {10.1186/s12964-018-0258-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230168}, year = {2018}, abstract = {Background Wilms' tumor 1-associating protein (WTAP) is a nuclear protein, which is ubiquitously expressed in many tissues. Furthermore, in various types of malignancies WTAP is overexpressed and plays a role as an oncogene. The function of WTAP in diffuse large B-cell lymphoma (DLBCL), however, remains unclear. Methods Immunohistochemistry was applied to evaluate the levels of WTAP expression in DLBCL tissues and normal lymphoid tissues. Overexpression and knock-down of WTAP in DLBCL cell lines, verified on mRNA and protein level served to analyze cell proliferation and apoptosis in DLBCL cell lines by flow cytometry. Finally, co-immunoprecipitation (Co-IP), IP, and GST-pull down assessed the interaction of WTAP with Heat shock protein 90 (Hsp90) and B-cell lymphoma 6 (BCL6) as well as determined the extend of its ubiquitinylation. Results WTAP protein levels were consistently upregulated in DLBCL tissues. WTAP promoted DLBCL cell proliferation and improved the ability to confront apoptosis, while knockdown of WTAP in DLBCL cell lines allowed a significant higher apoptosis rate after treatment with Etoposide, an anti-tumor drug. The stable expression of WTAP was depended on Hsp90. In line, we demonstrated that WTAP could form a complex with BCL6 via Hsp90 in vivo and in vitro. Conclusion WTAP is highly expressed in DLBCL, promoting growth and anti-apoptosis in DLBCL cell lines. WTAP is a client protein of Hsp90 and can appear in a complex with BCL6 and Hsp90 in DLBCL. Down-regulation of WTAP could improve the chemotherapeutic treatments in DLBCL.}, language = {en} } @article{BergesKerkauWerneretal.2016, author = {Berges, Carsten and Kerkau, Thomas and Werner, Sandra and Wolf, Nelli and Winter, Nadine and H{\"u}nig, Thomas and Einsele, Hermann and Topp, Max S. and Beyersdorf, Niklas}, title = {Hsp90 inhibition ameliorates CD4\(^{+}\) T cell-mediated acute Graft versus Host disease in mice}, series = {Immunity, Inflammation and Disease}, volume = {4}, journal = {Immunity, Inflammation and Disease}, number = {4}, doi = {10.1002/iid3.127}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168318}, pages = {463-473}, year = {2016}, abstract = {Introduction: For many patients with leukemia only allogeneic bone marrow transplantion provides a chance of cure. Co-transplanted mature donor T cells mediate the desired Graft versus Tumor (GvT) effect required to destroy residual leukemic cells. The donor T cells very often, however, also attack healthy tissue of the patient inducing acute Graft versus Host Disease (aGvHD)—a potentially life-threatening complication. Methods: Therefore, we used the well established C57BL/6 into BALB/c mouse aGvHD model to evaluate whether pharmacological inhibition of heat shock protein 90 (Hsp90) would protect the mice from aGvHD. Results: Treatment of the BALB/c recipient mice from day 0 to +2 after allogeneic CD4\(^{+}\) T cell transplantation with the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (DMAG) partially protected the mice from aGvHD. DMAG treatment was, however, insufficient to prolong overall survival of leukemia-bearing mice after transplantation of allogeneic CD4\(^{+}\) and CD8\(^{+}\) T cells. Ex vivo analyses and in vitro experiments revealed that DMAG primarily inhibits conventional CD4\(^{+}\) T cells with a relative resistance of CD4\(^{+}\) regulatory and CD8\(^{+}\) T cells toward Hsp90 inhibition. Conclusions: Our data, thus, suggest that Hsp90 inhibition might constitute a novel approach to reduce aGvHD in patients without abrogating the desired GvT effect.}, language = {en} } @phdthesis{Nedvetsky2003, author = {Nedvetsky, Pavel I.}, title = {Regulation of the nitric oxide receptor, soluble guanylyl cyclase}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7046}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Soluble guanylyl cyclase (sGC) is the best established receptor for nitric oxide (NO) and regulates a great number of important physiological functions. Surprisingly, despite the wellappreciated roles of this enzyme in regulation of vascular tone, smooth muscle cell proliferation, platelet aggregation, renal sodium secretion, synaptic plasticity, and other functions, extremely little is known about the regulation of sGC activity and protein levels. To date, the only well-proven physiologically relevant sGC regulator is NO. In the present study, some additional possibilities for sGC regulation were shown. Firstly, we evaluated the ability of different NO donors to stimulate sGC. Significant differences in the sGC stimulation by SNP and DEA/NO were found. DEA/NO stimulated sGC much stronger than did SNP. Interestingly, no correlation between the sGC protein and maximal activity distribution was found in rat brain regions tested, suggesting the existence of some additional regulatory mechanisms for sGC. The failure of SNP to stimulate sGC maximally might be one of the reasons why the lack of correlation between the distribution of sGC activity and proteins in brain was not detected earlier. Prolonged exposure of endothelial cells to NO donors produced desensitization of the cGMP response. This desensitization cannot be explained by increased PDE activity, since PDE inhibitors were not able to prevent the NO donor-induced decrease of the maximal cGMP response in endothelial cells. The failure of SH-reducing agents to improve the cGMP response after its desensitization by NO suggests that a SH-independent mechanism mediates NO effects. Demonstration that the potency of the recently described activator of oxidized (heme-free) sGC, BAY58-2667, to stimulate sGC increases after prolonged exposure of the cells to an NO donor, DETA/NO, suggests that oxidation of heme may be a reason for NOinduced desensitization of sGC and decrease in sGC protein level. Indeed, the well-known heme-oxidizing agent ODQ produces a dramatic decrease in sGC protein levels in endothelial cells and BAY58-2667 prevents this effect. Although the mechanism of sGC activation and stabilization by BAY58-2667 is unknown, this substance is an interesting candidate to modulate sGC under conditions where sGC heme iron is oxidized. Very little is known about regulation of sGC by intracellular localization or translocation between different intracellular compartments. In the present study, an increase in sGC sensitivity to NO under membrane association was demonstrated. Treatment of isolated lung with VEGF markedly increased sGC in membrane fractions of endothelial cells. Failure of VEGF to stimulate sGC membrane association in cultured endothelial cells allows us to propose a complex mechanism of regulation of sGC membrane association and/or a transient character of sGC membrane attachment. A very likely mechanism for the attachment of sGC to membranes is via sGCinteracting proteins. These proteins may participate also in other aspects of sGC regulation. The role of the recently described sGC interaction partner, Hsp90, was investigated. Shortterm treatment of endothelial cells with an Hsp90 inhibitor does not affect NO donor or calcium ionophore-stimulated cGMP accumulation in the cells. However, inhibition of Hsp90 results in a rapid and dramatic decrease in sGC protein levels in endothelial cells. These effects were unrelated to changes in sGC transcription, since inhibition of transcription had much slower effect on sGC protein levels. In contrast, inhibitors of proteasomes abolished the reduction in sGC protein levels produced by an Hsp90 inhibitor, suggesting involvement of proteolytic degradation of sGC proteins during inhibition of Hsp90. All these data together suggest that Hsp90 is required to maintain mature sGC proteins. In conclusion, in the present study it was demonstrated that multiple mechanisms are involved in the regulation of sGC activity and its sensitivity to NO. Oxidation of sGC heme by NO seems to be one of the mechanisms for negative regulation of sGC in the presence of high or prolonged stimulation with NO. Another possible means of regulating sGC sensitivity to NO is via the intracellular translocation of the enzyme. It has been also demonstrated here that attachment of sGC to the membrane fraction results in an apparent increase in the enzyme sensitivity to NO. Additionally, Hsp90 was required to maintain sGC protein in endothelial and other cell types. However, we could not find any acute affect of Hsp90 on sGC activity, as reported recently. All these findings demonstrate that the regulation of sGC activity and protein level is a much more complex process than had been assumed earlier.}, subject = {Guanylatcyclase}, language = {en} }