@phdthesis{Kirilmaz2019, author = {Kirilmaz, Ozan Seyitali}, title = {Thin Film Growth and Characterization of the Transition Metal Oxides Magnetite and Layered Perovskite Iridates}, doi = {10.25972/OPUS-17891}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This thesis describes the growth and characterization of both the all-oxide heterostructure Fe3O4/ZnO and the spin-orbit coupling driven layered perovskite iridates. As for Fe3O4/ZnO, the 100\% spin-polarized Fe3O4 is a promising spin electrode candidate for spintronic devices. However, the single crystalline ZnO substrates exhibit different polar surface termination which, together with substrate preparation method, can drastically affect the physical properties of Fe3O4/ZnO heterostructures. In this thesis two different methods of substrate preparation were investigated: a previously used in situ method involving sputtering and annealing treatments and a recent ex situ method containing only the annealing procedure. For the latter, the annealing treatment was performed in dry and humid O2 gas flow for the O- and Zn-terminated substrates, respectively, to produce atomically at surfaces as verified by atomic force microscopy(AFM). With these methods, four different ZnO substrates were fabricated and used further for Fe3O4 film growth. Fe3O4 films of 20 nm thickness were successfully grown by reactive molecular beam epitaxy. AFM measurements reveal a higher film surface roughness for the samples with in situ prepared substrates. Moreover, X-ray photoelectron spectroscopy (XPS) measurements indicate significant Zn substitution within the Fe3O4 film for these samples, whereas the samples with ex situ prepared substrates show stoichiometric Fe3O4 films. X-ray diffraction measurements confirm the observations from XPS, revealing additional peaks due to Zn substitution in Fe3O4 films grown on in situ prepared ZnO substrates. Conductivity, as well as magnetometry, measurements show the presence of Zn-doped ferrites in films grown on in situ prepared substrates. Such unintentionally intercalated Zn-doped ferrites dramatically change the electrical and magnetic properties of the films and, therefore, are not preferred in a high-quality heterostructure. X-ray reflectivity (XRR) measurements show for the film grown on ex situ prepared Zn-terminated substrate a variation of film density close to the interface which is also confirmed by transmission electron microscopy (TEM). Using polarized neutron reflectometry, magnetic depth profiles of the films grown on ex situ prepared substrates clearly indicate Fe3O4 layers with reduced magnetization at the interfaces. This result is consistent with earlier observations made by resonant magnetic X-ray reflectometry (RMXR), but in contrast to the findings from XRR and TEM of this thesis. A detailed TEM study of all four samples shows that the sample with ex situ prepared O-terminated substrate has the sharpest interface, whereas those with ex situ prepared Zn-terminated as well as in situ prepared substrates indicate rougher interfaces. STEM-EELS composition profiles of the samples reveal the Zn substitution in the films with in situ prepared substrates and therefore confirm the presence of Zn-doped ferrites. Moreover, a change of the Fe oxidation state of the first Fe layer at the interface which was observed in previous studies done by RMXR, was not verified for the samples with in situ prepared substrates thus leaving the question of a possible presence of the magnetically dead layer open. Furthermore, density functional theory calculations were performed to determine the termination dependent layer sequences which are ...-Zn-O-(interface)-[Fe(octa)-O-Fe(tetra)-Fe(octa)-Fe(tetra)-O]-[...]-... and ...-O-Zn-(interface)-[O-Fe(octa)-O-Fe(tetra)-Fe(octa)-Fe(tetra)]-[...]-... for the samples with O- and Zn-terminated substrates, respectively. Spin density calculations show that in case of O-termination the topmost substrate layers imitate the spin polarization of film layers close to the interface. Here, the first O layer is affected much stronger than the first Zn layer. Due to the strong decrease of this effect toward deeper substrate layers, the substrate surface is supposed to be sensitive to the contiguous spin polarization of the film. Thus, the topmost O layer of the O-terminated substrate could play the most essential role for effective spin injection into ZnO. The 5d transition metal oxides Ba2IrO4 (BIO) and Sr2IrO4 (SIO) are associated with the Ruddlesden-Popper iridate series with phase type "214" (RP{214), and due to the strong spin-orbit coupling belong to the class of Mott insulators. Moreover, they show many similarities of the isostructural high Tc-cuprate superconductors, e.g. crystal structure, magnetism and electronic band structure. Therefore, it is of great interest to activate a potential superconducting phase in (RP{214) iridates. However, only a small number of publications on PLD grown (RP{214) iridates in the literature exists. Furthermore, published data of soft X-ray angle resolved photoemission spectroscopy (SX-ARPES) experiments mainly originate from measurements which were performed on single crystals or MBE grown films of SIO and BIO. In this thesis La-doped SIO films (La0:2Sr1:8IrO4, further referred as LSIO) were used to pursue a potential superconducting phase. A set of characterization methods was used to analyze the quality of the PLD grown BIO, SIO and LSIO films. AFM measurements demonstrate that thick PLD grown(RP{214) iridate films have rougher surfaces, indicating a transition from a 2D layer-bylayer growth (which is demonstrated by RHEED oscillations) to a 3D island-like growth mode. In addition, chemical depth profiling XPS measurements indicate an increase of the O and Ir relative concentrations in the topmost film layers. Constant energy k-space maps and energy distribution curves (EDCs) measured by SX-ARPES show for every grown film only weak energy band dispersions, which are in strong contrast to the results obtained on the MBE grown films and single crystals from the literature. In this thesis, a subsequent TEM study reveals missing SrO layers within the grown films which occur mainly in the topmost layers, confirming the results and suggestions from XPS and SX-ARPES data: the PLD grown films have defects and, therefore, incoherently scatter photoelectrons. Nevertheless, the LSIO film shows small additional spectral weight between the highsymmetry M points close to the Fermi level which can be attributed to quasiparticle states which, in turn, indicates the formation of a Fermi-arc. However, neither conductivity measurements nor valence band analysis via XPS confirm an activation of a superconducting phase or presence of spectral weight of quasiparticle states at the Fermi level in this LSIO film. It is possible that these discovered difficulties in growth are responsible for the low number of SX-ARPES publications on PLD grown (RP{214) iridate films. For further investigations of (RP{214) iridate films by SX-ARPES, their PLD growth recipes have to be improved to create high quality single crystalline films without imperfections.}, subject = {Magnetit}, language = {en} } @phdthesis{Paul2010, author = {Paul, Markus Christian}, title = {Molecular beam epitaxy and properties of magnetite thin films on semiconducting substrates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56044}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {The present thesis is concerned with molecular beam epitaxy of magnetite (Fe3O4) thin films on semiconducting substrates and the characterization of their structural, chemical, electronic, and magnetic properties. Magnetite films could successfully be grown on ZnO substrates with high structural quality and atomically abrupt interfaces. The films are structurally almost completely relaxed exhibiting nearly the same in-plane and out-of-plane lattice constants as in the bulk material. Films are phase-pure and show only small deviations from the ideal stoichiometry at the surface and in some cases at the interface. Growth proceeds via wetting layer plus island mode and results in a domain structure of the films. Upon coalescence of growing islands twin-boundaries (rotational twinning) and anti-phase boundaries are formed. The overall magnetization is nearly bulk-like, but shows a slower approach to saturation, which can be ascribed to the reduced magnetization at anti-phase boundaries. However, the surface magnetization which was probed by x-ray magnetic circular dichroism was significantly decreased and is ascribed to a magnetically inactive layer at the surface. Such a reduced surface magnetization was also observed for films grown on InAs and GaAs. Magnetite could also be grown with nearly ideal iron-oxygen stoichiometry on InAs substrates. However, interfacial reactions of InAs with oxygen occur and result in arsenic oxides and indium enrichment. The grown films are of polycrystalline nature. For the fabrication of Fe3O4/GaAs films, a postoxidation of epitaxial Fe films on GaAs was applied. Growth proceeds by a transformation of the topmost Fe layers into magnetite. Depending on specific growth conditions, an Fe layer of different thickness remains at the interface. The structural properties are improved in comparison with films on InAs, and the resulting films are well oriented along [001] in growth direction. The magnetic properties are influenced by the presence of the Fe interface layer as well. The saturation magnetization is increased and the approach to saturation is faster than for films on the other substrates. We argue that this is connected to a decreased density of anti-phase boundaries because of the special growth method. Interface phases, viz. arsenic and gallium oxides, are quantified and different growth conditions are compared with respect to the interface composition.}, subject = {Molekularstrahlepitaxie}, language = {en} }