@phdthesis{Skiera2013, author = {Skiera, Christina}, title = {1H NMR spectroscopic determination of deterioration marker compounds in fats and oils}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95756}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In food and pharmaceutical analysis, the classical indices peroxide value (PV), acid value (AV) and p-anisidine value (ANV) still play an important role as quality and authenticity control parameters of fats and oils. These indices are sum parameters for certain deterioration products (PV for hydroperoxides, AV for free fatty acids, ANV for aldehydes) and are obtained using volumetric or UV/VIS spectroscopic analytical approaches. 1H NMR spectroscopy provides a fast and simple alternative to these classical approaches. In the present work, novel 1H NMR methods to determine hydroperoxides, free fatty acids and aldehydes in fats and oils were developed. Hydroperoxides: The influence of solvent, water, free fatty acids and sample weight on the hydroperoxide group proton (OOH) signal was investigated. On the basis of the obtained results, the sample preparation procedure of the new 1H NMR method was established. A rough assignment of the hydroperoxide group signals in edible fats and oils to methyl oleate, methyl linoleate and methyl linolenate was conducted. Furthermore, to gain information on how many different hydroperoxide species originate from trioleate autoxidation, a kinetic study on trioleate monohydroperoxides was performed. The evaluation of the data strongly indicates that all of the conceivable 18 trioleate monohydroperoxides were formed during trioleate autoxidation. The analytical performance of the NMR method was compared to that of the classical PV approach by means of the so-called "relative sensitivity" according to Mandel. It was shown that both methods exhibit a similar analytical performance. A total of 444 edible oil samples were analysed using both methods. For some oil varieties considerable discrepancies were found between the results. In the case of black seed oil and olive oil two substances were identified that influence the classical PV determination and thus cause positive (black seed oil) and negative (olive oil) deviations from the theoretical PV expected from the NMR values. Free fatty acids: In order to find the optimal solvent mixture to measure the carboxyl group protons (COOH) of free fatty acids in fats and oils, the effect of solvent on the COOH signal was investigated for different mixtures of CDCl3 and DMSO-d6. The comparison of the NMR method with the classical AV method by means of the relative sensitivity revealed that both methods exhibit a similar analytical performance. 420 edible oil samples were analysed by both approaches. Except for pumpkin seed oil, where slight deviations were observed, there was a good compliance between the results obtained from the two methods. Furthermore, the applicability of the 1H NMR assay to further lipids with relevance in pharmacy was tested. For hard fat, castor oil, waxes and oleyl oleate modifications of the original sample preparation procedure of the NMR method were necessary to achieve comparable results for both methods. Aldehydes: The new 1H NMR method enables the determination of the molar amounts of n-alkanals, (E)-2-alkenals and (E,E)-2,4-alkadienals. It was illustrated that the ANV can be modelled as a linear combination of the NMR integrals of these aldehyde species. A functional relationship was derived on the basis In conclusion, the new 1H NMR methods provide an excellent alternative to of calibration experiments. The suitability of the model was shown by comparing the NMR-determined ANVs with the measured classical ANVs of 79 commercially available edible oils of different oil types. In conclusion, the new 1H NMR methods provide an excellent alternative to the determination of the classical indices PV, AV and ANV. They have several advantages over the classical methods including the consumption of small solvent amounts, the ability to automatize measurement and to acquire several different parameters out of the same NMR spectrum. Especially concerning their selectivity, the 1H NMR methods are highly superior to the classical methods.}, subject = {Fett}, language = {en} }