@article{BakariSoaleIkengaScheibeetal.2021, author = {Bakari-Soale, Majeed and Ikenga, Nonso Josephat and Scheibe, Marion and Butter, Falk and Jones, Nicola G. and Kramer, Susanne and Engstler, Markus}, title = {The nucleolar DExD/H protein Hel66 is involved in ribosome biogenesis in Trypanosoma brucei}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-97020-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263872}, year = {2021}, abstract = {The biosynthesis of ribosomes is a complex cellular process involving ribosomal RNA, ribosomal proteins and several further trans-acting factors. DExD/H box proteins constitute the largest family of trans-acting protein factors involved in this process. Several members of this protein family have been directly implicated in ribosome biogenesis in yeast. In trypanosomes, ribosome biogenesis differs in several features from the process described in yeast. Here, we have identified the DExD/H box helicase Hel66 as being involved in ribosome biogenesis. The protein is unique to Kinetoplastida, localises to the nucleolus and its depletion via RNAi caused a severe growth defect. Loss of the protein resulted in a decrease of global translation and accumulation of rRNA processing intermediates for both the small and large ribosomal subunits. Only a few factors involved in trypanosome rRNA biogenesis have been described so far and our findings contribute to gaining a more comprehensive picture of this essential process.}, language = {en} } @article{BencurovaAkashDobsonetal.2023, author = {Bencurova, Elena and Akash, Aman and Dobson, Renwick C.J. and Dandekar, Thomas}, title = {DNA storage-from natural biology to synthetic biology}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.01.045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349971}, pages = {1227-1235}, year = {2023}, abstract = {Natural DNA storage allows cellular differentiation, evolution, the growth of our children and controls all our ecosystems. Here, we discuss the fundamental aspects of DNA storage and recent advances in this field, with special emphasis on natural processes and solutions that can be exploited. We point out new ways of efficient DNA and nucleotide storage that are inspired by nature. Within a few years DNA-based information storage may become an attractive and natural complementation to current electronic data storage systems. We discuss rapid and directed access (e.g. DNA elements such as promotors, enhancers), regulatory signals and modulation (e.g. lncRNA) as well as integrated high-density storage and processing modules (e.g. chromosomal territories). There is pragmatic DNA storage for use in biotechnology and human genetics. We examine DNA storage as an approach for synthetic biology (e.g. light-controlled nucleotide processing enzymes). The natural polymers of DNA and RNA offer much for direct storage operations (read-in, read-out, access control). The inbuilt parallelism (many molecules at many places working at the same time) is important for fast processing of information. Using biology concepts from chromosomal storage, nucleic acid processing as well as polymer material sciences such as electronical effects in enzymes, graphene, nanocellulose up to DNA macram{\´e} , DNA wires and DNA-based aptamer field effect transistors will open up new applications gradually replacing classical information storage methods in ever more areas over time (decades).}, language = {en} } @article{BinasBessiSchwalbe2020, author = {Binas, Oliver and Bessi, Irene and Schwalbe, Harald}, title = {Structure Validation of G-Rich RNAs in Noncoding Regions of the Human Genome}, series = {ChemBioChem}, volume = {21}, journal = {ChemBioChem}, number = {11}, doi = {10.1002/cbic.201900696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214892}, pages = {1656 -- 1663}, year = {2020}, abstract = {We present the rapid biophysical characterization of six previously reported putative G-quadruplex-forming RNAs from the 5′-untranslated region (5′-UTR) of silvestrol-sensitive transcripts for investigation of their secondary structures. By NMR and CD spectroscopic analysis, we found that only a single sequence—[AGG]\(_{2}\)[CGG]\(_{2}\)C—folds into a single well-defined G-quadruplex structure. Sequences with longer poly-G strands form unspecific aggregates, whereas CGG-repeat-containing sequences exhibit a temperature-dependent equilibrium between a hairpin and a G-quadruplex structure. The applied experimental strategy is fast and provides robust readout for G-quadruplex-forming capacities of RNA oligomers.}, language = {en} } @article{BrieseSaalAppenzelleretal.2015, author = {Briese, Michael and Saal, Lena and Appenzeller, Silke and Moradi, Mehri and Baluapuri, Apoorva and Sendtner, Michael}, title = {Whole transcriptome profiling reveals the RNA content of motor axons}, series = {Nucleic Acids Research}, journal = {Nucleic Acids Research}, doi = {10.1093/nar/gkv1027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126800}, year = {2015}, abstract = {Most RNAs within polarized cells such as neurons are sorted subcellularly in a coordinated manner. Despite advances in the development of methods for profiling polyadenylated RNAs from small amounts of input RNA, techniques for profiling coding and non-coding RNAs simultaneously are not well established. Here, we optimized a transcriptome profiling method based on double-random priming and applied it to serially diluted total RNA down to 10 pg. Read counts of expressed genes were robustly correlated between replicates, indicating that the method is both reproducible and scalable. Our transcriptome profiling method detected both coding and long non-coding RNAs sized >300 bases. Compared to total RNAseq using a conventional approach our protocol detected 70\% more genes due to reduced capture of ribosomal RNAs. We used our method to analyze the RNA composition of compartmentalized motoneurons. The somatodendritic compartment was enriched for transcripts with post-synaptic functions as well as for certain nuclear non-coding RNAs such as 7SK. In axons, transcripts related to translation were enriched including the cytoplasmic non-coding RNA 7SL. Our profiling method can be applied to a wide range of investigations including perturbations of subcellular transcriptomes in neurodegenerative diseases and investigations of microdissected tissue samples such as anatomically defined fiber tracts.}, language = {en} } @phdthesis{Esch2001, author = {Esch, Mandy}, title = {Novel Nucleic Acid Sensors for the Rapid Detection of Cryptosporidium Parvum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Recent advances in the development of immunoassays and nucleic acid assays have improved the performance and increased the sensitivity of sensors that are based on biochemical recognition. The new approaches taken by researchers include detecting pathogens by detecting their nucleic acids, using new nontoxic reporter entities for generating signals, and downscaling and miniaturizing sensors to micromigration and microfluidic formats. This dissertation connects some of these successful approaches, thereby leading to the development of novel nucleic acid sensors for rapid and easy detection of pathogens. The author's goal was to develop diagnostic tools that enable investigators to detect pathogens rapidly and on site. While the sensors can be used to detect any pathogen, the author first customized them for detecting particularly Cryptosporidium parvum, a pathogen whose detection is important, yet presents many challenges. Chapter 2 of this thesis presents a novel test-strip for the detection of C. parvum. The test-strip is designed to detect nucleic acids rather than proteins or other epitopes. While test strips are commonly used for sensors based on immunological recognition, this format is very new in applications in which nucleic acids are detected. Further, to indicate the presence or absence of a specific target on the test strip, dye-entrapped, oligonucleotide-tagged liposomes are employed. Using liposomes as reporter particles has advantages over using other reporter labels, because the cavity that the phospholipidic membranes of the liposomes form can be filled with up to 106 dye molecules. By using heterobifunctional linkers liposomes can be tagged with oligonucleotides, thereby enabling their use in nucleic acid hybridization assays. The developed test-strip provides an internal control. The limit of detection is 2.7 fmol/mL with a sample volume of 30 mL. In chapter 3 the detection of nucleic acids by means of oligonucleotide-tagged liposomes is scaled down to a microfluidic assay format. Because the application of biosensors to microfluidic formats is very new in the field of analytical chemistry, the first part of this chapter is devoted to developing the design and the method to fabricate the microchip devices. The performance of the microchips is then optimized by investigating the interactions of nucleic acids and liposomes with the material the chips consist of and by passivating the surface of the chips with blocking reagents. The developed microfluidic chip enabled us to reduce the sample volume needed for one assay to 12.5 mL. The limit of detection of this assay was determined to be 0.4 fmol/mL. Chapters 4 and 5 expand on the development of the microfluidic assay. A prototype microfluidic array that is able to detect multiple analytes in a single sample simultaneously is developed. Using such an array will enable investigators to detect pathogens that occur in the same environment, for example, C. parvum and Giardia duodenalis by conducting a single test. The array's ability to perform multiple sample analysis is shown by detecting different concentrations of target nucleic acids. Further, the author developed a microfluidic chip in which interdigitated microelectrode arrays (IDAs) that consist of closely spaced microelectrodes are integrated. The IDAs facilitate electrochemical detection of cryptosporidial RNA. Electrochemical detection schemes offer benefits of technical simplicity, speed, and sensitivity. In this project liposomes are filled with electrochemically active molecules and are then utilized to generate electrochemical signals. Chapter 6 explores the feasibility of liposomes for enhancing signals derived from nucleic acid hybridization in surface plasmon resonance (SPR) spectroscopy. SPR spectroscopy offers advantages because nucleic acid hybridization can be monitored in real time and under homogeneous conditions because no washing steps are required. SPR spectroscopy is very sensitive and it can be expected that, in the future, SPR will be integrated into microfluidic nucleic acid sensors.}, subject = {Cryptosporidium}, language = {en} } @article{FoersterBeisserGrohmeetal.2012, author = {F{\"o}rster, Frank and Beisser, Daniela and Grohme, Markus A. and Liang, Chunguang and Mali, Brahim and Siegl, Alexander Matthias and Engelmann, Julia C. and Shkumatov, Alexander V. and Schokraie, Elham and M{\"u}ller, Tobias and Schn{\"o}lzer, Martina and Schill, Ralph O. and Frohme, Marcus and Dandekar, Thomas}, title = {Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations}, series = {Bioinformatics and biology insights}, volume = {6}, journal = {Bioinformatics and biology insights}, doi = {10.4137/BBI.S9150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123089}, pages = {69-96}, year = {2012}, abstract = {Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade \(Milnesium\) \(tardigradum\) were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from \(Hypsibius\) \(dujardini\), revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for \(M.\) \(tardigradum\) are different from typical motifs known from higher animals. \(M.\) \(tardigradum\) and \(H.\) \(dujardini\) protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of \(M.\) \(tardigradum\). These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and \(M.\) \(tardigradum\) in particular so highly stress resistant.}, language = {en} } @article{HeidrichBauriedlBarquistetal.2017, author = {Heidrich, Nadja and Bauriedl, Saskia and Barquist, Lars and Li, Lei and Schoen, Christoph and Vogel, J{\"o}rg}, title = {The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {10}, doi = {10.1093/nar/gkx168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170828}, pages = {6147-6167}, year = {2017}, abstract = {Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of -35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx.}, language = {en} } @phdthesis{Hoer2020, author = {H{\"o}r, Jens}, title = {Discovery of RNA/protein complexes by Grad-seq}, doi = {10.25972/OPUS-21181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211811}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Complex formation between macromolecules constitutes the foundation of most cellular processes. Most known complexes are made up of two or more proteins interacting in order to build a functional entity and therefore enabling activities which the single proteins could otherwise not fulfill. With the increasing knowledge about noncoding RNAs (ncRNAs) it has become evident that, similar to proteins, many of them also need to form a complex to be functional. This functionalization is usually executed by specific or global RNA-binding proteins (RBPs) that are specialized binders of a certain class of ncRNAs. For instance, the enterobacterial global RBPs Hfq and ProQ together bind >80 \% of the known small regulatory RNAs (sRNAs), a class of ncRNAs involved in post-transcriptional regulation of gene expression. However, identification of RNA-protein interactions so far was performed individually by employing low-throughput biochemical methods and thereby hindered the discovery of such interactions, especially in less studied organisms such as Gram-positive bacteria. Using gradient profiling by sequencing (Grad-seq), the present thesis aimed to establish high-throughput, global RNA/protein complexome resources for Escherichia coli and Streptococcus pneumoniae in order to provide a new way to investigate RNA-protein as well as protein-protein interactions in these two important model organisms. In E. coli, Grad-seq revealed the sedimentation profiles of 4,095 (∼85 \% of total) transcripts and 2,145 (∼49 \% of total) proteins and with that reproduced its major ribonucleoprotein particles. Detailed analysis of the in-gradient distribution of the RNA and protein content uncovered two functionally unknown molecules—the ncRNA RyeG and the small protein YggL—to be ribosomeassociated. Characterization of RyeG revealed it to encode for a 48 aa long, toxic protein that drastically increases lag times when overexpressed. YggL was shown to be bound by the 50S subunit of the 70S ribosome, possibly indicating involvement of YggL in ribosome biogenesis or translation of specific mRNAs. S. pneumoniae Grad-seq detected 2,240 (∼88 \% of total) transcripts and 1,301 (∼62 \% of total) proteins, whose gradient migration patterns were successfully reconstructed, and thereby represents the first RNA/protein complexome resource of a Gram-positive organism. The dataset readily verified many conserved major complexes for the first time in S. pneumoniae and led to the discovery of a specific interaction between the 3'!5' exonuclease Cbf1 and the competence-regulating ciadependent sRNAs (csRNAs). Unexpectedly, trimming of the csRNAs by Cbf1 stabilized the former, thereby promoting their inhibitory function. cbf1 was further shown to be part of the late competence genes and as such to act as a negative regulator of competence.}, subject = {Multiproteinkomplex}, language = {en} } @article{JiBaderRamanathanetal.2021, author = {Ji, Changhe and Bader, Jakob and Ramanathan, Pradhipa and Hennlein, Luisa and Meissner, Felix and Jablonka, Sibylle and Mann, Matthias and Fischer, Utz and Sendtner, Michael and Briese, Michael}, title = {Interaction of 7SK with the Smn complex modulates snRNP production}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-21529-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259125}, pages = {1278}, year = {2021}, abstract = {Gene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand.}, language = {en} } @article{KincaidChenCoxetal.2014, author = {Kincaid, Rodney P. and Chen, Yating and Cox, Jennifer E. and Rethwilm, Axel and Sullivan, Christopher S.}, title = {Noncanonical MicroRNA (miRNA) Biogenesis Gives Rise to Retroviral Mimics of Lymphoproliferative and Immunosuppressive Host miRNAs}, series = {mBio}, volume = {5}, journal = {mBio}, number = {2}, issn = {2150-7511}, doi = {10.1128/mBio.00074-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117216}, pages = {e00074-14}, year = {2014}, abstract = {MicroRNAs (miRNAs) play regulatory roles in diverse processes in both eukaryotic hosts and their viruses, yet fundamental questions remain about which viruses code for miRNAs and the functions that they serve. Simian foamy viruses (SFVs) of Old World monkeys and apes can zoonotically infect humans and, by ill-defined mechanisms, take up lifelong infections in their hosts. Here, we report that SFVs encode multiple miRNAs via a noncanonical mode of biogenesis. The primary SFV miRNA transcripts (pri-miRNAs) are transcribed by RNA polymerase III (RNAP III) and take multiple forms, including some that are cleaved by Drosha. However, these miRNAs are generated in a context-dependent fashion, as longer RNAP II transcripts spanning this region are resistant to Drosha cleavage. This suggests that the virus may avoid any fitness penalty that could be associated with viral genome/transcript cleavage. Two SFV miRNAs share sequence similarity and functionality with notable host miRNAs, the lymphoproliferative miRNA miR-155 and the innate immunity suppressor miR-132. These results have important implications regarding foamy virus biology, viral miRNAs, and the development of retroviral-based vectors. IMPORTANCE Fundamental questions remain about which viruses encode miRNAs and their associated functions. Currently, few natural viruses with RNA genomes have been reported to encode miRNAs. Simian foamy viruses are retroviruses that are prevalent in nonhuman host populations, and some can zoonotically infect humans who hunt primates or work as animal caretakers. We identify a cluster of miRNAs encoded by SFV. Characterization of these miRNAs reveals evolutionarily conserved, unconventional mechanisms to generate small RNAs. Several SFV miRNAs share sequence similarity and functionality with host miRNAs, including the oncogenic miRNA miR-155 and innate immunity suppressor miR-132. Strikingly, unrelated herpesviruses also tap into one or both of these same regulatory pathways, implying relevance to a broad range of viruses. These findings provide new insights with respect to foamy virus biology and vectorology.}, language = {en} }