@phdthesis{Aido2024, author = {Aido, Ahmed}, title = {Development of anti-TNF antibody-gold nanoparticles (anti-TNF-AuNPs)}, doi = {10.25972/OPUS-34921}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349212}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Gold nanoparticles of diameter ca. 60 nm have been synthesized based on Turkevich and Frens protocols. We have demonstrated that the carboxyl-modified gold nanoparticles can be coupled covalently with antibodies (Ab) of interest using the EDC/NHS coupling procedure. Binding studies with Ab-grafted AuNPs and GpL fusion proteins proved that conjugation of AuNPs with antibodies enables immobilization of antibodies with preservation of a significant antigen binding capacity. More importantly, our findings showed that the conjugation of types of anti-TNF receptors antibodies such as anti-Fn14 antibodies (PDL192 and 5B6) (Aido et al., 2021), anti-CD40, anti-4-1BB and anti-TNFR2 with gold nanoparticles confers them with potent agonism. Thus, our results suggest that AuNPs can be utilized as a platform to immobilize anti-TNFR antibodies which, on the one hand, helps to enhance their agonistic activity in comparison to "free" inactive antibodies by mimicking the effect of cell-anchored antibodies or membrane-bound TNF ligands and, on the other hand, allows to develop new generations of drug delivery systems. These constructs are characterized with their biocompatibility and their tunable synthesis process. In a further work part, we combined the benefits of the established system of Ab-AuNPs with materials used widely in the modern biofabrication approaches such as the photo-crosslinked hydrogels, methacrylate-modified gelatin (GelMA), combined with embedded variants of human cell lines. The acquired results demonstrated clearly that the attaching of proteins like antibodies to gold nanoparticles might reduce their release rate from the crosslinked hydrogels upon the very low diffusion of gold nanoparticles from the solid constructs to the surrounding medium yielding long-term local functioning proteins-attached particles. Moreover, our finding suggests that hydrogel-embedded AuNP-immobilized antibodies, e.g. anti-TNFα-AuNPs or anti-IL1-AuNPs enable local inhibitory functions, To sum up, our results demonstrate that AuNPs can act as a platform to attach anti-TNFR antibodies to enhance their agonistic activity by resembling the output of cell-anchoring or membrane bounding. Gold nanoparticles are considered, thus, as promising tool to develop the next generation of drug delivery systems, which may contribute to cancer therapy. On top of that, the embedding of anti-inflammatory-AuNPs in the biofabricated hydrogel presents new innovative strategy of the treatment of autoinflammatory diseases.}, subject = {Nanopartikel}, language = {en} } @article{VargasWagnerShaikhetal.2022, author = {Vargas, Juan Gamboa and Wagner, Jennifer and Shaikh, Haroon and Lang, Isabell and Medler, Juliane and Anany, Mohamed and Steinfatt, Tim and Mosca, Josefina Pe{\~n}a and Haack, Stephanie and Dahlhoff, Julia and B{\"u}ttner-Herold, Maike and Graf, Carolin and Viera, Estibaliz Arellano and Einsele, Hermann and Wajant, Harald and Beilhack, Andreas}, title = {A TNFR2-Specific TNF fusion protein with improved in vivo activity}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.888274}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277436}, year = {2022}, abstract = {Tumor necrosis factor (TNF) receptor-2 (TNFR2) has attracted considerable interest as a target for immunotherapy. Indeed, using oligomeric fusion proteins of single chain-encoded TNFR2-specific TNF mutants (scTNF80), expansion of regulatory T cells and therapeutic activity could be demonstrated in various autoinflammatory diseases, including graft-versus-host disease (GvHD), experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis (CIA). With the aim to improve the in vivo availability of TNFR2-specific TNF fusion proteins, we used here the neonatal Fc receptor (FcRn)-interacting IgG1 molecule as an oligomerizing building block and generated a new TNFR2 agonist with improved serum retention and superior in vivo activity. Methods Single-chain encoded murine TNF80 trimers (sc(mu)TNF80) were fused to the C-terminus of an in mice irrelevant IgG1 molecule carrying the N297A mutation which avoids/minimizes interaction with Fcγ-receptors (FcγRs). The fusion protein obtained (irrIgG1(N297A)-sc(mu)TNF80), termed NewSTAR2 (New selective TNF-based agonist of TNF receptor 2), was analyzed with respect to activity, productivity, serum retention and in vitro and in vivo activity. STAR2 (TNC-sc(mu)TNF80 or selective TNF-based agonist of TNF receptor 2), a well-established highly active nonameric TNFR2-specific variant, served as benchmark. NewSTAR2 was assessed in various in vitro and in vivo systems. Results STAR2 (TNC-sc(mu)TNF80) and NewSTAR2 (irrIgG1(N297A)-sc(mu)TNF80) revealed comparable in vitro activity. The novel domain architecture of NewSTAR2 significantly improved serum retention compared to STAR2, which correlated with efficient binding to FcRn. A single injection of NewSTAR2 enhanced regulatory T cell (Treg) suppressive activity and increased Treg numbers by > 300\% in vivo 5 days after treatment. Treg numbers remained as high as 200\% for about 10 days. Furthermore, a single in vivo treatment with NewSTAR2 upregulated the adenosine-regulating ectoenzyme CD39 and other activation markers on Tregs. TNFR2-stimulated Tregs proved to be more suppressive than unstimulated Tregs, reducing conventional T cell (Tcon) proliferation and expression of activation markers in vitro. Finally, singular preemptive NewSTAR2 administration five days before allogeneic hematopoietic cell transplantation (allo-HCT) protected mice from acute GvHD. Conclusions NewSTAR2 represents a next generation ligand-based TNFR2 agonist, which is efficiently produced, exhibits improved pharmacokinetic properties and high serum retention with superior in vivo activity exerting powerful protective effects against acute GvHD.}, language = {en} }