@article{WetzelJablonkaBlum2013, author = {Wetzel, Andrea and Jablonka, Sibylle and Blum, Robert}, title = {Cell-autonomous axon growth of young motoneurons is triggered by a voltage-gated sodium channel}, series = {Channels (Austin)}, volume = {7}, journal = {Channels (Austin)}, number = {1}, doi = {10.4161/chan.23153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132586}, pages = {51-56}, year = {2013}, abstract = {Spontaneous electrical activity preceding synapse formation contributes to the precise regulation of neuronal development. Examining the origins of spontaneous activity revealed roles for neurotransmitters that depolarize neurons and activate ion channels. Recently, we identified a new molecular mechanism underlying fluctuations in spontaneous neuronal excitability. We found that embryonic motoneurons with a genetic loss of the low-threshold sodium channel Na\(_V\)1.9 show fewer fluctuations in intracellular calcium in axonal compartments and growth cones than wild-type littermates. As a consequence, axon growth of Na\(_V\)1.9-deficient motoneurons in cell culture is drastically reduced while dendritic growth and cell survival are not affected. Interestingly, Na\(_V\)1.9 function is observed under conditions that would hardly allow a ligand- or neurotransmitter-dependent depolarization. Thus, Na\(_V\)1.9 may serve as a cell-autonomous trigger for neuronal excitation. In this addendum, we discuss a model for the interplay between cell-autonomous local neuronal activity and local cytoskeleton dynamics in growth cone function.}, language = {en} } @phdthesis{Subramanian2011, author = {Subramanian, Narayan}, title = {Role of NaV1.9 in activity dependent axon growth in embryonic cultured motoneurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Spontaneous neural activity has been shown to regulate crucial events in neurite growth including axonal branching and path finding. In animal models of spinal muscular atrophy (SMA) cultured embryonic mouse motoneurons show distinct defect in axon elongation and neural activity. This defect is governed by abnormal clustering of Ca2+ channels in the axonal regions and the protruding growth cone area. The mechanisms that regulate the opening of calcium channels in developing motoneurons are not yet clear. The question was addressed by blocking neural activity in embryonic cultured motoneurons by pharmacological inhibition of voltage-gated sodium channels (VGSC) by saxitoxin (STX) and tetrodotoxin (TTX). Low dosages of STX resulted in significant reduction of axon growth and neural activity in cultured motoneurons. This pharmacological treatment did not affect survival of motoneurons in comparison to control motoneurons that was grown in the presence of survival neurotrophic factors BDNF and CNTF. It was also found that STX was 10 times more potent than TTX a common inhibitor of VGSC with a reduced activity on the TTX-insensitive sodium channels NaV1.5, NaV1.8 and NaV1.9. Reverse Transcriptase-PCR experiments revealed the presence of NaV1.9 as the likely candidate that begins to express from embryonic stage sixteen in the mouse spinal cord. Immunolabelling experiments showed that the channel is expressed in the axonal compartments and axonal growth cones in cultured motoneurons. Suppression of NaV1.9 in cultured motoneurons by lentivirus mediated short hairpin-RNA (shRNA) resulted in shorter axon length in comparison with uninfected and scrambled constructs. Further, embryonic motoneurons cultured from NaV1.9 knockout mice also showed a significant reduction in neural activity and axon growth. The findings of this work highlight the role of NaV1.9 as an important contender in regulating activity dependent axon growth in embryonic cultured motoneurons. NaV1.9 could therefore be considered as a prospective molecule that could play an important role in regulating axon growth in motoneuron disease models like spinal muscular atrophy (SMA).}, subject = {Axon}, language = {en} }