@article{PetersenKuntzerFischeretal.2015, author = {Petersen, Jens A. and Kuntzer, Thierry and Fischer, Dirk and von der Hagen, Maja and Veronika, Angela and Lobrinus, Johannes A. and Kress, Wolfram and Rushing, Elisabeth J. and Sinnreich, Michael and Jung, Hans H.}, title = {Dysferlinopathy in Switzerland: clinical phenotypes and potential founder effects}, series = {BMC Neurology}, volume = {15}, journal = {BMC Neurology}, number = {182}, doi = {10.1186/s12883-015-0449-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139920}, year = {2015}, abstract = {Background: Dysferlin is reduced in patients with limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment myopathy, and in certain Ethnic clusters. Methods: We evaluated clinical and genetic patient data from three different Swiss Neuromuscular Centers. Results: Thirteen patients from 6 non-related families were included. Age of onset was 18.8 +/- 4.3 years. In all patients, diallelic disease-causing mutations were identified in the DYSF gene. Nine patients from 3 non-related families from Central Switzerland carried the identical homozygous mutation, c.3031 + 2T>C. A possible founder effect was confirmed by haplotype analysis. Three patients from two different families carried the heterozygous mutation, c.1064_1065delAA. Two novel mutations were identified (c.2869C>T (p.Gln957Stop), c.5928G>A (p.Trp1976Stop)). Conclusions: Our study confirms the phenotypic heterogeneity associated with DYSF mutations. Two mutations (c.3031 + 2T>C, c.1064_1065delAA) appear common in Switzerland. Haplotype analysis performed on one case (c.3031 + 2T>C) suggested a possible founder effect.}, language = {en} } @article{KarleSchueleKlebeetal.2013, author = {Karle, Kathrin N. and Sch{\"u}le, Rebecca and Klebe, Stephan and Otto, Susanne and Frischholz, Christian and Liepelt-Scarfone, Inga and Sch{\"o}ls, Ludger}, title = {Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP)}, series = {Orphanet Journal of Rare Diseases}, volume = {8}, journal = {Orphanet Journal of Rare Diseases}, number = {158}, issn = {1750-1172}, doi = {10.1186/1750-1172-8-158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124763}, year = {2013}, abstract = {Background: Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. Methods: We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed. Results: Whereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27\% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40\%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms. Conclusions: Whereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials.}, language = {en} }