@phdthesis{SalasRamirez2020, author = {Salas Ramirez, Maikol}, title = {Methods to Improve Bone Marrow Dosimetry in Molecular Radiotherapy}, doi = {10.25972/OPUS-20850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208503}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Bone marrow dosimetry is a topic of high interest in molecular radiotherapy. Predicting the level of hematological toxicity is one of the most important goals of nuclear medicine radiation dosimetry. To achieve this, it is necessary to quantify the absorbed dose to the active bone marrow, thus aiming at administering the most efficient therapy with a minimum level of adverse effects in the patient. The anatomical complexity of trabecular bone and bone marrow leads to the need of applying non-nuclear medicine imaging methods for determining the spatial distribution of soft tissue, adipose tissue, and bone in spongiosa. Therefore, the two objectives of this dissertation are: i) to apply magnetic resonance imaging (MRI) for quantification of the fat volume fraction, and ii) to validate a method based on dual-energy quantitative computed tomography (DEQCT) for quantification of the trabecular bone volume fraction. In a first step, an MRI sequence (two-point Dixon) for fat-water separation was validated in a 3 Tesla system by quantifying the fat volume fraction in a phantom and the lumbar vertebrae of volunteers and comparing with magnetic resonance spectroscopy (MRS). After successful validation, the fat volume fraction was retrospectively measured in the five lumbar vertebrae of 44 patient images acquired in the clinical routine. The two-point Dixon showed a good quantification of the fat volume fraction in the phantom experiment (-9.8\% maximum relative error with respect to the nominal values). In the volunteers, a non-significant difference between MRI and MRS was found for the quantification of the fat volume fraction in volumes-of-interest with similar dimensions and position in both quantification methodologies (MRI and MRS). In the study with patient data, the marrow conversion (red → yellow marrow) was found to be age-dependent, and slower in males (0.3\% per year) than in females (0.5\% per year). Also, considerable variability of the fat volume fraction in patients of similar ages and the same gender was observed. These results enable the use of two-point Dixon MRI in the quantification of the fat volume fraction in the bone marrow. Additionally, the constant marrow conversion during adulthood suggests that a patient-specific approach should replace the assumption of a constant cellularity volume fraction of 0.7 (reference man) (1,2) as proposed by the International Commission on Radiological Protection (ICRP). In a second step, a quantification method based on DEQCT was validated in two CT systems: i) a clinical CT integrated into a SPECT/CT and ii) a dual-source computed tomography (DSCT) system. The method was applied in two phantoms: the first was used to validate the DEQCT method by the quantification of the hydroxyapatite volume fraction in three vials of 50 ml each and three different hydroxyapatite concentrations (100 mg/cm3, 200 mg/cm3, 300 mg/cm3). The second phantom was the European spine phantom (ESP), an anthropomorphic spine phantom. It was used to quantify the bone mineral content (BMC) on the whole vertebra and the hydroxyapatite volume fraction (VFHA) in the spongiosa region of each vertebra of the phantom. Lastly, the BMC of lumbar vertebrae 1 (LV1) and 2 (LV2) was measured in a patient using DEQCT and dual-energy X-ray absorptiometry (DEXA). Furthermore, the hydroxyapatite volume fraction (VFHA) and the bone volume fraction (VFB) was calculated for both the whole vertebrae and the spongiosa region of LV1 and LV2. The measured and nominal hydroxyapatite volume fraction in the vial phantom showed a good correlation (maximum relative error: 14.2\%). The quantification of the BMC on the whole vertebra and the VFHA on the spongiosa region showed larger relative errors than in the validation phantom. The quantification of BMC on LV1 and LV2 showed relative errors between DEXA and DSCT equal to 7.6\% (LV1) and -8.4\% (LV2). Also, the values of the VFHA (mineral bone) were smaller than the VFB. This result is consistent with the bone composition (mineral bone plus organic material). The DEQCT method enables the quantification of hydroxyapatite (mineral bone) and bone (mineral bone plus organic material) in a clinical setting. However, the method showed an overestimation of the quantified mineral bone volume fraction. This overestimation might be related to the lack of detailed information on the CT X-ray spectra and detector sensitivity. Also, the DEQCT method showed a dependency on the CT reconstruction kernel and the chemical description of the materials to be quantified. Based on the results of this work, the feasibility for quantifying the fat volume fraction and the bone volume fraction in the spongiosa in a clinical setting has been demonstrated/proven. Furthermore, the differences in fat volume fraction in females and males, as well as the variability of the fat volume fraction in subjects of similar ages, questions the approximation of the cellularity volume fraction by only a single ICRP reference value in bone marrow dosimetry for molecular radiotherapy. Lastly, this study presents the first approach for non-invasive quantification of the bone volume fraction (mineral bone plus organic material) for improved bone marrow dosimetry.}, language = {en} }