@article{AfonsoGrunzHoffmeierMuelleretal.2015, author = {Afonso-Grunz, Fabian and Hoffmeier, Klaus and M{\"u}ller, S{\"o}ren and Westermann, Alexander J. and Rotter, Bj{\"o}rn and Vogel, J{\"o}rg and Winter, Peter and Kahl, G{\"u}nter}, title = {Dual 3'Seq using deepSuperSAGE uncovers transcriptomes of interacting Salmonella enterica Typhimurium and human host cells}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {323}, doi = {10.1186/s12864-015-1489-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143230}, year = {2015}, abstract = {Background: The interaction of eukaryotic host and prokaryotic pathogen cells is linked to specific changes in the cellular proteome, and consequently to infection-related gene expression patterns of the involved cells. To simultaneously assess the transcriptomes of both organisms during their interaction we developed dual 3'Seq, a tag-based sequencing protocol that allows for exact quantification of differentially expressed transcripts in interacting pro-and eukaryotic cells without prior fixation or physical disruption of the interaction. Results: Human epithelial cells were infected with Salmonella enterica Typhimurium as a model system for invasion of the intestinal epithelium, and the transcriptional response of the infected host cells together with the differential expression of invading and intracellular pathogen cells was determined by dual 3'Seq coupled with the next-generation sequencing-based transcriptome profiling technique deepSuperSAGE (deep Serial Analysis of Gene Expression). Annotation to reference transcriptomes comprising the operon structure of the employed S. enterica Typhimurium strain allowed for in silico separation of the interacting cells including quantification of polycistronic RNAs. Eighty-nine percent of the known loci are found to be transcribed in prokaryotic cells prior or subsequent to infection of the host, while 75\% of all protein-coding loci are represented in the polyadenylated transcriptomes of human host cells. Conclusions: Dual 3'Seq was alternatively coupled to MACE (Massive Analysis of cDNA ends) to assess the advantages and drawbacks of a library preparation procedure that allows for sequencing of longer fragments. Additionally, the identified expression patterns of both organisms were validated by qRT-PCR using three independent biological replicates, which confirmed that RELB along with NFKB1 and NFKB2 are involved in the initial immune response of epithelial cells after infection with S. enterica Typhimurium.}, language = {en} } @article{AukemaKreuzKohleretal.2014, author = {Aukema, Sietse M. and Kreuz, Markus and Kohler, Christian W. and Rosolowski, Maciej and Hasenclever, Dirk and Hummel, Michael and K{\"u}ppers, Ralf and Lenze, Diddo and Ott, German and Pott, Christiane and Richter, Julia and Rosenwald, Andreas and Szczepanowski, Monika and Schwaenen, Carsten and Stein, Harald and Trautmann, Heiko and Wessendorf, Swen and Tr{\"u}mper, Lorenz and Loeffler, Markus and Spang, Rainer and Kluin, Philip M. and Klapper, Wolfram and Siebert, Reiner}, title = {Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma}, series = {Haematologica}, volume = {99}, journal = {Haematologica}, number = {4}, issn = {1592-8721}, doi = {10.3324/haematol.2013.091827}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116882}, pages = {726-735}, year = {2014}, abstract = {Chromosomal translocations affecting the MYC oncogene are the biological hallmark of Burkitt lymphomas but also occur in a subset of other mature B-cell lymphomas. If accompanied by a chromosomal break targeting the BCL2 and/or BCL6 oncogene these MYC translocation-positive (MYC+) lymphomas are called double-hit lymphomas, otherwise the term single-hit lymphomas is applied. In order to characterize the biological features of these MYC+ lymphomas other than Burkitt lymphoma we explored, after exclusion of molecular Burkitt lymphoma as defined by gene expression profiling, the molecular, pathological and clinical aspects of 80 MYC-translocation-positive lymphomas (31 single-hit, 46 double-hit and 3 MYC+-lymphomas with unknown BCL6 status). Comparison of single-hit and double-hit lymphomas revealed no difference in MYC partner (IG/non-IG), genomic complexity, MYC expression or gene expression profile. Double-hit lymphomas more frequently showed a germinal center B-cell-like gene expression profile and had higher IGH and MYC mutation frequencies. Gene expression profiling revealed 130 differentially expressed genes between BCL6(+)/MYC+ and BCL2(+)/MYC+ double-hit lymphomas. BCL2(+)/MYC+ double-hit lymphomas more frequently showed a germinal center B-like gene expression profile. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In this series of lymphomas, in which immunochemotherapy was administered in only a minority of cases, single-hit and double-hit lymphomas had a similar poor outcome in contrast to the outcome of molecular Burkitt lymphoma and lymphomas without the MYC break. Our data suggest that, after excluding molecular Burkitt lymphoma and pediatric cases, MYC+ lymphomas are biologically quite homogeneous with single-hit and double-hit lymphomas as well as IG-MYC and non-IG-MYC+ lymphomas sharing various molecular characteristics.}, language = {en} } @article{BerghoffKonzerManketal.2013, author = {Berghoff, Bork A. and Konzer, Anne and Mank, Nils N. and Looso, Mario and Rische, Tom and F{\"o}rstner, Konrad U. and Kr{\"u}ger, Marcus and Klug, Gabriele}, title = {Integrative "Omics"-Approach Discovers Dynamic and Regulatory Features of Bacterial Stress Responses}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {6}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003576}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127587}, pages = {e1003576}, year = {2013}, abstract = {Bacteria constantly face stress conditions and therefore mount specific responses to ensure adaptation and survival. Stress responses were believed to be predominantly regulated at the transcriptional level. In the phototrophic bacterium Rhodobacter sphaeroides the response to singlet oxygen is initiated by alternative sigma factors. Further adaptive mechanisms include post-transcriptional and post-translational events, which have to be considered to gain a deeper understanding of how sophisticated regulation networks operate. To address this issue, we integrated three layers of regulation: (1) total mRNA levels at different time-points revealed dynamics of the transcriptome, (2) mRNAs in polysome fractions reported on translational regulation (translatome), and (3) SILAC-based mass spectrometry was used to quantify protein abundances (proteome). The singlet oxygen stress response exhibited highly dynamic features regarding short-term effects and late adaptation, which could in part be assigned to the sigma factors RpoE and RpoH2 generating distinct expression kinetics of corresponding regulons. The occurrence of polar expression patterns of genes within stress-inducible operons pointed to an alternative of dynamic fine-tuning upon stress. In addition to transcriptional activation, we observed significant induction of genes at the post-transcriptional level (translatome), which identified new putative regulators and assigned genes of quorum sensing to the singlet oxygen stress response. Intriguingly, the SILAC approach explored the stress-dependent decline of photosynthetic proteins, but also identified 19 new open reading frames, which were partly validated by RNA-seq. We propose that comparative approaches as presented here will help to create multi-layered expression maps on the system level ("expressome"). Finally, intense mass spectrometry combined with RNA-seq might be the future tool of choice to re-annotate genomes in various organisms and will help to understand how they adapt to alternating conditions.}, language = {en} } @article{BocukWolffKrauseetal.2017, author = {Bocuk, Derya and Wolff, Alexander and Krause, Petra and Salinas, Gabriela and Bleckmann, Annalen and Hackl, Christina and Beissbarth, Tim and Koenig, Sarah}, title = {The adaptation of colorectal cancer cells when forming metastases in the liver: expression of associated genes and pathways in a mouse model}, series = {BMC Cancer}, volume = {17}, journal = {BMC Cancer}, number = {342}, doi = {10.1186/s12885-017-3342-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170853}, year = {2017}, abstract = {Background: Colorectal cancer (CRC) is the second leading cause of cancer-related death in men and women. Systemic disease with metastatic spread to distant sites such as the liver reduces the survival rate considerably. The aim of this study was to investigate the changes in gene expression that occur on invasion and expansion of CRC cells when forming metastases in the liver. Methods: The livers of syngeneic C57BL/6NCrl mice were inoculated with 1 million CRC cells (CMT-93) via the portal vein, leading to the stable formation of metastases within 4 weeks. RNA sequencing performed on the Illumina platform was employed to evaluate the expression profiles of more than 14,000 genes, utilizing the RNA of the cell line cells and liver metastases as well as from corresponding tumour-free liver. Results: A total of 3329 differentially expressed genes (DEGs) were identified when cultured CMT-93 cells propagated as metastases in the liver. Hierarchical clustering on heat maps demonstrated the clear changes in gene expression of CMT-93 cells on propagation in the liver. Gene ontology analysis determined inflammation, angiogenesis, and signal transduction as the top three relevant biological processes involved. Using a selection list, matrix metallopeptidases 2, 7, and 9, wnt inhibitory factor, and chemokine receptor 4 were the top five significantly dysregulated genes. Conclusion: Bioinformatics assists in elucidating the factors and processes involved in CRC liver metastasis. Our results support the notion of an invasion-metastasis cascade involving CRC cells forming metastases on successful invasion and expansion within the liver. Furthermore, we identified a gene expression signature correlating strongly with invasiveness and migration. Our findings may guide future research on novel therapeutic targets in the treatment of CRC liver metastasis.}, language = {en} } @article{BrodehlBelkeGarnettetal.2017, author = {Brodehl, Andreas and Belke, Darrell D. and Garnett, Lauren and Martens, Kristina and Abdelfatah, Nelly and Rodriguez, Marcela and Diao, Catherine and Chen, Yong-Xiang and Gordon, Paul M. K. and Nygren, Anders and Gerull, Brenda}, title = {Transgenic mice overexpressing desmocollin-2 (DSC2) develop cardiomyopathy associated with myocardial inflammation and fibrotic remodeling}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0174019}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171084}, pages = {e0174019}, year = {2017}, abstract = {Background Arrhythmogenic cardiomyopathy is an inherited heart muscle disorder leading to ventricular arrhythmias and heart failure, mainly as a result of mutations in cardiac desmosomal genes. Desmosomes are cell-cell junctions mediating adhesion of cardiomyocytes; however, the molecular and cellular mechanisms underlying the disease remain widely unknown. Desmocollin-2 is a desmosomal cadherin serving as an anchor molecule required to reconstitute homeostatic intercellular adhesion with desmoglein-2. Cardiac specific lack of desmoglein-2 leads to severe cardiomyopathy, whereas overexpression does not. In contrast, the corresponding data for desmocollin-2 are incomplete, in particular from the view of protein overexpression. Therefore, we developed a mouse model overexpressing desmocollin-2 to determine its potential contribution to cardiomyopathy and intercellular adhesion pathology. Methods and results We generated transgenic mice overexpressing DSC2 in cardiac myocytes. Transgenic mice developed a severe cardiac dysfunction over 5 to 13 weeks as indicated by 2D-echocardiography measurements. Corresponding histology and immunohistochemistry demonstrated fibrosis, necrosis and calcification which were mainly localized in patches near the epi- and endocardium of both ventricles. Expressions of endogenous desmosomal proteins were markedly reduced in fibrotic areas but appear to be unchanged in non-fibrotic areas. Furthermore, gene expression data indicate an early up-regulation of inflammatory and fibrotic remodeling pathways between 2 to 3.5 weeks of age. Conclusion Cardiac specific overexpression of desmocollin-2 induces necrosis, acute inflammation and patchy cardiac fibrotic remodeling leading to fulminant biventricular cardiomyopathy.}, language = {en} } @article{BuchnerBlancoRedondoBunzetal.2013, author = {Buchner, Erich and Blanco Redondo, Beatriz and Bunz, Melanie and Halder, Partho and Sadanandappa, Madhumala K. and M{\"u}hlbauer, Barbara and Erwin, Felix and Hofbauer, Alois and Rodrigues, Veronica and VijayRaghavan, K. and Ramaswami, Mani and Rieger, Dirk and Wegener, Christian and F{\"o}rster, Charlotte}, title = {Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the W{\"u}rzburg Hybridoma Library}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97109}, year = {2013}, abstract = {Several novel synaptic proteins have been identified by monoclonal antibodies (mAbs) of the W{\"u}rzburg hybridoma library generated against homogenized Drosophila brains, e.g. cysteine string protein, synapse-associated protein of 47 kDa, and Bruchpilot. However, at present no routine technique exists to identify the antigens of mAbs of our library that label only a small number of cells in the brain. Yet these antibodies can be used to reproducibly label and thereby identify these cells by immunohistochemical staining. Here we describe the staining patterns in the Drosophila brain for ten mAbs of the W{\"u}rzburg hybridoma library. Besides revealing the neuroanatomical structure and distribution of ten different sets of cells we compare the staining patterns with those of antibodies against known antigens and GFP expression patterns driven by selected Gal4 lines employing regulatory sequences of neuronal genes. We present examples where our antibodies apparently stain the same cells in different Gal4 lines suggesting that the corresponding regulatory sequences can be exploited by the split-Gal4 technique for transgene expression exclusively in these cells. The detection of Gal4 expression in cells labeled by mAbs may also help in the identification of the antigens recognized by the antibodies which then in addition to their value for neuroanatomy will represent important tools for the characterization of the antigens. Implications and future strategies for the identification of the antigens are discussed.}, language = {en} } @article{BoehmScherzerKroletal.2016, author = {B{\"o}hm, Jennifer and Scherzer, S{\"o}nke and Krol, Elzbieta and Kreuzer, Ines and von Meyer, Katharina and Lorey, Christian and Mueller, Thomas D. and Shabala, Lana and Monte, Isabel and Solano, Roberto and Al-Rasheid, Khaled A. S. and Rennenberg, Heinz and Shabala, Sergey and Neher, Erwin and Hedrich, Rainer}, title = {The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake}, series = {Current Biology}, volume = {26}, journal = {Current Biology}, number = {3}, doi = {10.1016/j.cub.2015.11.057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190870}, pages = {286-295}, year = {2016}, abstract = {Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na\(^+\)-rich animal and nutrition for the plant.}, language = {en} } @article{CeteciCeteciZanuccoetal.2012, author = {Ceteci, Fatih and Ceteci, Semra and Zanucco, Emanuele and Thakur, Chitra and Becker, Matthias and El-Nikhely, Nefertiti and Fink, Ludger and Seeger, Werner and Savai, Rajkumar and Rapp, Ulf R.}, title = {E-Cadherin Controls Bronchiolar Progenitor Cells and Onset of Preneoplastic Lesions in Mice}, series = {Neoplasia}, volume = {14}, journal = {Neoplasia}, number = {12}, doi = {10.1593/neo.121088}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135407}, pages = {1164-1177}, year = {2012}, abstract = {Although progenitor cells of the conducting airway have been spatially localized and some insights have been gained regarding their molecular phenotype, relatively little is known about the mechanisms regulating their maintenance, activation, and differentiation. This study investigates the potential roles of E-cadherin in mouse Clara cells, as these cells were shown to represent the progenitor/stem cells of the conducting airways and have been implicated as the cell of origin of human non-small cell lung cancer. Postnatal inactivation of E-cadherin affected Clara cell differentiation and compromised airway regeneration under injury conditions. In steady-state adult lung, overexpression of the dominant negative E-cadherin led to an expansion of the bronchiolar stem cells and decreased differentiation concomitant with canonical Wnt signaling activation. Expansion of the bronchiolar stem cell pool was associated with an incessant proliferation of neuroepithelial body-associated Clara cells that ultimately gave rise to bronchiolar hyperplasia. Despite progressive hyperplasia, only a minority of the mice developed pulmonary solid tumors, suggesting that the loss of E-cadherin function leads to tumor formation when additional mutations are sustained. The present study reveals that E-cadherin plays a critical role in the regulation of proliferation and homeostasis of the epithelial cells lining the conducting airways.}, language = {en} } @article{CorreiaSantosBischlerWestermannetal.2021, author = {Correia Santos, Sara and Bischler, Thorsten and Westermann, Alexander J. and Vogel, J{\"o}rg}, title = {MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT}, series = {Cell Reports}, volume = {34}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2021.108722}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259134}, pages = {108722}, year = {2021}, abstract = {A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.}, language = {en} } @article{CurtazReifschlaegerStraehleetal.2022, author = {Curtaz, Carolin J. and Reifschl{\"a}ger, Leonie and Str{\"a}hle, Linus and Feldheim, Jonas and Feldheim, Julia J. and Schmitt, Constanze and Kiesel, Matthias and Herbert, Saskia-Laureen and W{\"o}ckel, Achim and Meybohm, Patrick and Burek, Malgorzata}, title = {Analysis of microRNAs in exosomes of breast cancer patients in search of molecular prognostic factors in brain metastases}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073683}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284476}, year = {2022}, abstract = {Brain metastases are the most severe tumorous spread during breast cancer disease. They are associated with a limited quality of life and a very poor overall survival. A subtype of extracellular vesicles, exosomes, are sequestered by all kinds of cells, including tumor cells, and play a role in cell-cell communication. Exosomes contain, among others, microRNAs (miRs). Exosomes can be taken up by other cells in the body, and their active molecules can affect the cellular process in target cells. Tumor-secreted exosomes can affect the integrity of the blood-brain barrier (BBB) and have an impact on brain metastases forming. Serum samples from healthy donors, breast cancer patients with primary tumors, or with brain, bone, or visceral metastases were used to isolate exosomes and exosomal miRs. Exosomes expressed exosomal markers CD63 and CD9, and their amount did not vary significantly between groups, as shown by Western blot and ELISA. The selected 48 miRs were detected using real-time PCR. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the diagnostic accuracy. We identified two miRs with the potential to serve as prognostic markers for brain metastases. Hsa-miR-576-3p was significantly upregulated, and hsa-miR-130a-3p was significantly downregulated in exosomes from breast cancer patients with cerebral metastases with AUC: 0.705 and 0.699, respectively. Furthermore, correlation of miR levels with tumor markers revealed that hsa-miR-340-5p levels were significantly correlated with the percentage of Ki67-positive tumor cells, while hsa-miR-342-3p levels were inversely correlated with tumor staging. Analysis of the expression levels of miRs in serum exosomes from breast cancer patients has the potential to identify new, non-invasive, blood-borne prognostic molecular markers to predict the potential for brain metastasis in breast cancer. Additional functional analyzes and careful validation of the identified markers are required before their potential future diagnostic use.}, language = {en} }