@article{HuangDingRoelfsemaetal.2021, author = {Huang, Shouguang and Ding, Meiqi and Roelfsema, M. Rob G. and Dreyer, Ingo and Scherzer, S{\"o}nke and Al-Rasheid, Khaled A. S and Gao, Shiqiang and Nagel, Georg and Hedrich, Rainer and Konrad, Kai R.}, title = {Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {28}, doi = {10.1126/sciadv.abg4619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260925}, year = {2021}, abstract = {Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO\(_2\) and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl\(^-\) and NO\(_3\)\(^-\) currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.}, language = {en} } @article{KuckaLangZhangetal.2021, author = {Kucka, Kirstin and Lang, Isabell and Zhang, Tengyu and Siegmund, Daniela and Medler, Juliane and Wajant, Harald}, title = {Membrane lymphotoxin-α\(_2\)β is a novel tumor necrosis factor (TNF) receptor 2 (TNFR2) agonist}, series = {Cell Death \& Disease}, volume = {12}, journal = {Cell Death \& Disease}, number = {4}, doi = {10.1038/s41419-021-03633-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260077}, pages = {360}, year = {2021}, abstract = {In the early 1990s, it has been described that LTα and LTβ form LTα\(_2\)β and LTαβ\(_2\) heterotrimers, which bind to TNFR1 and LTβR, respectively. Afterwards, the LTαβ\(_2\)-LTβR system has been intensively studied while the LTα\(_2\)β-TNFR1 interaction has been ignored to date, presumably due to the fact that at the time of identification of the LTα\(_2\)β-TNFR1 interaction one knew already two ligands for TNFR1, namely TNF and LTα. Here, we show that LTα\(_2\)β interacts not only with TNFR1 but also with TNFR2. We furthermore demonstrate that membrane-bound LTα\(_2\)β (memLTα\(_2\)β), despite its asymmetric structure, stimulates TNFR1 and TNFR2 signaling. Not surprising in view of its ability to interact with TNFR2, LTα\(_2\)β is inhibited by Etanercept, which is approved for the treatment of rheumatoid arthritis and also inhibits TNF and LTα.}, language = {en} }