@article{RauHeindelUnsleberetal.2014, author = {Rau, Markus and Heindel, Tobias and Unsleber, Sebastian and Braun, Tristan and Fischer, Julian and Frick, Stefan and Nauerth, Sebastian and Schneider, Christian and Vest, Gwenaelle and Reitzenstein, Stephan and Kamp, Martin and Forchel, Alfred and H{\"o}fling, Sven and Weinfurter, Harald}, title = {Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources-a proof of principle experiment}, series = {New Journal of Physics}, volume = {16}, journal = {New Journal of Physics}, number = {043003}, doi = {10.1088/1367-2630/16/4/043003}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116760}, year = {2014}, abstract = {Highly efficient single-photon sources (SPS) can increase the secure key rate of quantum key distribution (QKD) systems compared to conventional attenuated laser systems. Here we report on a free space QKD test using an electrically driven quantum dot single-photon source (QD SPS) that does not require a separate laser setup for optical pumping and thus allows for a simple and compact SPS QKD system. We describe its implementation in our 500 m free space QKD system in downtown Munich. Emulating a BB84 protocol operating at a repetition rate of 125 MHz, we could achieve sifted key rates of 5-17 kHz with error ratios of 6-9\% and g((2))(0)-values of 0.39-0.76.}, language = {en} } @article{HeIffLundtetal.2016, author = {He, Yu-Ming and Iff, Oliver and Lundt, Nils and Baumann, Vasilij and Davanco, Marcelo and Srinivasan, Kartik and H{\"o}fling, Sven and Schneider, Christian}, title = {Cascaded emission of single photons from the biexciton in monolayered WSe\(_{2}\)}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13409}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169363}, year = {2016}, abstract = {Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe\(_{2}\), sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe\(_{2}\), which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors.}, language = {en} }