@article{ZimniakKirschnerHilpertetal.2021, author = {Zimniak, Melissa and Kirschner, Luisa and Hilpert, Helen and Geiger, Nina and Danov, Olga and Oberwinkler, Heike and Steinke, Maria and Sewald, Katherina and Seibel, J{\"u}rgen and Bodem, Jochen}, title = {The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-85049-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259820}, pages = {5890}, year = {2021}, abstract = {To circumvent time-consuming clinical trials, testing whether existing drugs are effective inhibitors of SARS-CoV-2, has led to the discovery of Remdesivir. We decided to follow this path and screened approved medications "off-label" against SARS-CoV-2. Fluoxetine inhibited SARS-CoV-2 at a concentration of 0.8 mu g/ml significantly in these screenings, and the EC50 was determined with 387 ng/ml. Furthermore, Fluoxetine reduced viral infectivity in precision-cut human lung slices showing its activity in relevant human tissue targeted in severe infections. Fluoxetine treatment resulted in a decrease in viral protein expression. Fluoxetine is a racemate consisting of both stereoisomers, while the S-form is the dominant serotonin reuptake inhibitor. We found that both isomers show similar activity on the virus, indicating that the R-form might specifically be used for SARS-CoV-2 treatment. Fluoxetine inhibited neither Rabies virus, human respiratory syncytial virus replication nor the Human Herpesvirus 8 or Herpes simplex virus type 1 gene expression, indicating that it acts virus-specific. Moreover, since it is known that Fluoxetine inhibits cytokine release, we see the role of Fluoxetine in the treatment of SARS-CoV-2 infected patients of risk groups.}, language = {en} } @phdthesis{Zhang2012, author = {Zhang, Guoliang}, title = {Phytochemical Research on Two Ancistrocladus Species, Semi-Synthesis of Dimeric Naphthylisoquinoline Alkaloids, and Structure Optimization of Antitumoral Naphthoquinones}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Plant-derived natural products and their analogs continue to play an important role in the discovery of new drugs for the treatment of human diseases. Potentially promising representatives of secondary metabolites are the naphthylisoquinoline alkaloids, which show a broad range of activities against protozoan pathogens, such as plasmodia, leishmania, and trypanosoma. Due to the increasing resistance of those pathogens against current therapies, highly potent novel agents are still urgently needed. Thus, it is worthy to discover new naphthylisoquinoline alkaloids hopefully with pronounced bioactivities by isolation from plants or by synthesis. The naphthylisoquinoline alkaloids are biosynthetically related to another class of plant-derived products, the naphthoquinones, some of which have been recently found to display excellent anti-multiple myeloma activities without showing any cytotoxicities on normal blood cells. Multiple myeloma still remains incurable, although remissions may be induced with co-opted therapeutic treatments. Therefore, more potent naphthoquinones are urgently required, and can be obtained by isolation from plants or by synthesis. In detail, the results in this thesis are listed as follows: 1) Isolation and characterization of naphthylisoquinoline alkaloids from the stems of a Chinese Ancistrocladus tectorius species. Nine new naphthylisoquinoline alkaloids, named ancistectorine A1 (60), N-methylancistectorine A1 (61), ancistectorine A2 (62a), 5-epi-ancistectorine A2 (62b), 4'-O-demethylancistectorine A2 (63), ancistectorine A3 (64), ancistectorine B1 (65), ancistectorine C1 (66), and 5-epi-ancistrolikokine D (67) were isolated from the Chinese A. tectorius and fully characterized by chemical, spectroscopic, and chiroptical methods. Furthermore, the in vitro anti-infectious activities of 60-62 and 63-66 have been tested. Three of the metabolites, 61, 62a, and 62b, exhibited strong antiplasmodial activities against the strain K1 of P. falciparum without showing significant cytotoxicities. With IC50 values of 0.08, 0.07, and 0.03 μM, respectively, they were 37 times more active than the standard chloroquine (IC50 = 0.26 μM). Moreover, these three compounds displayed high antiplasmodial selectivity indexes ranging from 100 to 3300. According to the TDR/WHO guidelines, they could be considered as lead compounds. In addition, seven alkaloids, 69-74 (structures not shown here), were isolated from A. tectorius that were known, but new to the plant, together with another fourteen known compounds (of these, only the structures of the three main alkaloids, 5a, 5b, and 78 are shown here), which had been previously found in the plant. The three metabolites ancistrocladine (5a), hamatine (5b), and (+)-ancistrocline (78) were found to show no or moderate activities against the MM cell lines. 2) Isolation and characterization of naphthylisoquinoline alkaloids from the root bark of a new, botanically yet undescribed Congolese Ancistrocladus species. An unprecedented dimeric Dioncophyllaceae-type naphthylisoquinoline alkaloid, jozimine A2 (84), as first recognized by G. Bauckmann from an as yet undescribed Ancistrocladus species, was purified and characterized as part of this thesis. Its full structural assignment was achieved by spectroscopic and chiroptical methods, and further confirmed by an X-ray diffraction analysis, which had never succeeded for any other dimeric naphthylisoquinoline alkaloids before. Structurally, the dimer is composed of two identical 4'-O-demethyldioncophylline A halves, coupled through a sterically hindered central axis at C-3',3'' of the two naphthalene moieties. Pharmacologically, jozimine A2 (84) showed an extraordinary antiplasmodial activity (IC50 = 1.4 nM) against the strain NF54 of P. falciparum. Beside jozimine A2 (85), another new alkaloid, 6-O-demethylancistrobrevine C (84), and four known ones, ancistrocladine (5a), hamatine (5b), ancistrobrevine C (86), and dioncophylline A (6) were isolated from the Ancistrocladus species, the latter in a large quantity (~500 mg), showing that the plant produces Ancistrocladaceae-type, mixed-Ancistrocladaceae/Dioncophyllaceae-type, and Dioncophyllaceae-type naphthyl- isoquinoline alkaloids. Remarkably, it is one of the very few plants, like A. abbreviatus, and A. barteri, that simultaneously contain typical representatives of all the above three classes of alkaloids. 3) Semi-synthesis of jozimine A2 (85), 3'-epi-85, jozimine A3 (93) and other alkaloids from dioncophylline A (6). The dimeric naphthylisoquinoline alkaloids, jozimine A2 (85) and 3'-epi-85, constitute rewarding synthetic targets for a comparative analysis of their antiplasmodial activities and for a further confirmation of the assigned absolute configurations of the isolated natural product of 85. They were semi-synthesized in a four-step reaction sequence from dioncophylline A (6) in cooperation with T. B{\"u}ttner. The key step was a biomimetic phenol-oxidative dimerization at C-3' of the N,O-dibenzylated derivative of 89 by utilizing Pb(OAc)4. This is the first time that the synthesis of such an extremely sterically hindered (four ortho-substituents) naphthylisoquinoline alkaloid - with three consecutive biaryl axes! - has been successfully achieved. A novel dimeric naphthylisoquinoline, jozimine A3 (93), bearing a 6',6''-central biaryl axis, was semi-synthesized from 5'-O-demethyldioncophylline A (90) by a similar biomimetic phenol-oxidative coupling reaction as a key step, by employing Ag2O. HPLC analysis with synthetic reference material of 3'-epi-85 and 93 for co-elution revealed that these two alkaloids clearly are not present in the crude extract of the Ancistrocladus species from which jozimine A2 (85) was isolated. This evidences that jozimine A2 (85) is very specifically biosynthesized by the plant with a high regio- and stereoslectivity. Remarkably, the two synthetic novel dimeric naphthylisoquinoline alkaloids 3'-epi-85 and 93 were found to display very good antiplasmodial activities, albeit weaker than that of the natural and semi-synthetic product 85. Additionally, the two compounds 3'-epi-85 and 93 possessed high or moderate selectivity indexes, which were much lower than that of 85. However, they can still be considered as new lead structures. Two unprecedented oxidative products of dioncophylline A, the diastereomeric dioncotetralones A (94a) and B (94b), were synthesized from dioncophylline A (6) in a one-step reaction. Remarkably, the aromatic properties in the "naphthalene" and the "isoquinoline" rings of 94a and 94b are partially lost and the "biaryl" axis has become a C,C-double bond, so that the two halves are nearly co-planar to each other, which has never been found among any natural or synthetic naphthylisoquinoline alkaloid. Their full structural characterization was accomplished by spectroscopic methods and quantum-chemical CD calculations (done by Y. Hemberger). The presumed reaction mechanism was proposed in this thesis. In addition, one of the two compounds, 94a, exhibited a highly antiplasmodial activity (IC50 = 0.09 μM) with low cytotoxicity, and thus, can be considered as a new promising lead structure. Its 2'-epi-isomer, 94b, was inactive, evidencing a significant effect of chirality on the bioactivity. Of a number of naphthylisoquinoline alkaloids tested against the multiple-myeloma cell lines, the three compounds, dioncophylline A (6), 4'-O-demethyldioncophylline A (89), and 5'-O-demethyldioncophylline A (90) showed excellent activities, even much stronger than dioncoquinones B (10), C (102), the epoxide 175, or the standard drug melphalan. 4) Isolation and characterization of bioactive naphthoquinones from cell cultures of Triphyophyllum peltatum. Three new naphthoquinones, dioncoquinones C (102), D (103), and E (104), the known 8-hydroxydroserone (105), which is new to this plant, and one new naphthol dimer, triphoquinol A (107), were isolated from cell cultures of T. peltatum in cooperation with A. Irmer. Dioncoquinone C (102) showed an excellent activity against the MM cells, very similar to that of the previously found dioncoquinone B (10), without showing any inhibitory effect on normal cells. The other three naphthoquinones, 103105, were inactive or only weakly active. 5) Establishment of a new strategy for a synthetic access to dioncoquinones B (10) and C (102) on a large scale for in vivo experiments and for the synthesis of their analogs for first SAR studies. Before the synthesis of dioncoquinone B (10) described in this thesis, two synthetic pathways had previously been established in our group. The third approach described here involved the preparation of the joint synthetic intermediate 42 with the previous two routes. The tertiary benzamide 135 was ortho-deprotonated by using s-BuLi/TMEDA, followed by transmetallation with MgBr2▪2Et2O, and reaction with 2-methylallyl bromide (139). It resulted in the formation of ortho-allyl benzamide 140, which was cyclized by using methyl lithium to afford the naphthol 42. This strategy proved to be the best among the established three approaches with regard to its very low number of steps and high yields. By starting with 136, this third strategy yielded the related bioactive natural product, dioncoquinone C (102), which was accessed by total synthesis for the first time. To identify the pharmacophore of the antitumoral naphthoquinones, a library of dioncoquinone B (10) and C (102) analogs were synthesized for in vitro testing. Among the numerous naphthoquinones tested, the synthetic 7-O-demethyldioncoquinone C (or 7-O-hydroxyldioncoquinone B) (145), constitutes another promising basic structure to develop a new anti-MM agent. Furthermore, preliminary SAR results evidence that the three hydroxy functions at C-3, C-5, and C-6 are essential for the biological properties as exemplarily shown through the compounds 10, 102, and 145. All other mixed OH/OMe- or completely OMe-substituted structures were entirely inactive. By a serendipity the expoxide 175 was found to display the best anti-MM activity of all the tested isolated metabolites from T. peltatum, the synthesized naphthoquinones, and their synthetic intermediates. Toxic effects of 175 on normal cells were not observed, in contrast to the high toxicities of all other epoxides. Thus, the anti-MM activity of 175 is of high selectivity. The preliminary SAR studies revealed that the 6-OMe group in 175 is required, thus differed with the above described naphthoquinones (where 6-OH is a requisite in 10, 102, and 145), which evidenced potentially different modes of action for these two classes of compounds. 6) The first attempted total synthesis of the new naturally occurring triphoquinone (187a), which was recently isolated from the root cultures of T. peltatum in our group. A novel naphthoquinone-naphthalene dimer, 187a (structure shown in Chapter 10), was isolated in small quantities from the root cultures of T. peltatum. Thus, its total synthesis was attempted for obtaining sufficient amounts for selected biotestings. The key step was planned to prepare the extremely sterically hindered (four ortho-substituents) binaphthalene 188 by a coupling reaction between the two 2-methylnaphthalene derivatives. Test reactions involving a system of two simplified 2-methylnaphthylboron species and 2-methylnaphthyl bromide proved the Buchwald ligand as most promising. The optimized conditions were then applied to the two true - highly oxygenated - coupling substrates, between the 2-methylnaphthylboron derivatives 210, 211, 213, or 214 and the 2-methylnaphthyl iodides (or bromides) 215 (206), 215 (206), 212 (205), or 212 (205), respectively. Unfortunately, this crucial step failed although various bases and solvent systems were tested. This could be due to the high electron density of the two coupling substrates, both bearing strongly OMOM/OMe-donating function groups. Therefore, a more powerful catalyst system or an alternative synthetic strategy must be explored for the total synthesis of 187a. 7) Phytochemical investigation of the Streptomyces strain RV-15 derived from a marine sponge. Cyclodysidins A-D (216-219), four new cyclic lipopeptides with a- and ß-amino acids, were isolated from the Streptomyces strain RV15 derived from a marine sponge by Dr. U. Abdelmohsen. Their structures were established as cyclo-(ß-AFA-Ser-Gln-Asn-Tyr-Asn-Ser-Thr) by spectroscopic analysis using 2D NMR techniques and CID-MS/MS in the course of this thesis. In conclusion, the present work contributes to the discovery of novel antiplasmodial naphthylisoquinoline alkaloids and antitumoral naphthoquinones, which will pave the way for future studies on these two classes of compounds.}, subject = {Ancistrocladus}, language = {en} } @article{ZhangRadackiBraunschweigetal.2021, author = {Zhang, Fangyuan and Radacki, Krzysztof and Braunschweig, Holger and Lambert, Christoph and Ravat, Prince}, title = {Zinc-[7]helicenocyanine and its discrete π-stacked homochiral Dimer}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202109380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256534}, pages = {23656-23660}, year = {2021}, abstract = {In this communication, we demonstrate a novel approach to prepare a discrete dimer of chiral phthalocyanine (Pc) by exploiting the flexible molecular geometry of helicenes, which enables structural interlocking and strong aggregation tendency of Pcs. Synthesized [7]helicene-Pc hybrid molecular structure, zinc-[7]helicenocyanine (Zn-7HPc), exclusively forms a stable dimeric pair consisting of two homochiral molecules. The dimerization constants were estimated to be as high as 8.96×10\(^6\) M\(^{-1}\) and 3.42×107 M\(^{-1}\) in THF and DMSO, respectively, indicating remarkable stability of dimer. In addition, Zn\(^{-7}\)HPc exhibited chiral self-sorting behavior, which resulted in preferential formation of a homochiral dimer also in the racemic sample. Two phthalocyanine subunits in the dimeric form strongly communicate with each other as revealed by a large comproportionation constant and observation of an IV-CT band for the thermodynamically stable mixed-valence state.}, language = {en} } @article{ZhangMichailSaaletal.2019, author = {Zhang, Fangyuan and Michail, Evripidis and Saal, Fridolin and Krause, Ana-Maria and Ravat, Prince}, title = {Stereospecific Synthesis and Photophysical Properties of Propeller-Shaped C\(_{90}\)H\(_{48}\) PAH}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {71}, doi = {10.1002/chem.201904962}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208682}, pages = {16241-16245}, year = {2019}, abstract = {Herein, we have synthesized an enantiomerically pure propeller-shaped PAH, C\(_{90}\)H\(_{48}\), possessing three [7]helicene and three [5]helicene subunits. This compound can be obtained in gram quantities in a straightforward manner. The photophysical and chiroptical properties were investigated using UV/Vis absorption and emission, optical rotation and circular dichroism spectroscopy, supported by DFT calculations. The nonlinear optical properties were investigated by two-photon absorption measurements using linearly and circularly polarized light. The extremely twisted structure and packing of the homochiral compound were investigated by single-crystal X-ray diffraction analysis.}, language = {en} } @article{ZahranAlbohyKhaliletal.2020, author = {Zahran, Eman Maher and Albohy, Amgad and Khalil, Amira and Ibrahim, Alyaa Hatem and Ahmed, Heba Ali and El-Hossary, Ebaa M. and Bringmann, Gerhard and Abdelmohsen, Usama Ramadan}, title = {Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation}, series = {Marine Drugs}, volume = {18}, journal = {Marine Drugs}, number = {12}, issn = {1660-3397}, doi = {10.3390/md18120645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220041}, year = {2020}, abstract = {Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented.}, language = {en} } @article{WuerthnerNoll2021, author = {W{\"u}rthner, Frank and Noll, Niklas}, title = {A Calix[4]arene-Based Cyclic Dinuclear Ruthenium Complex for Light-Driven Catalytic Water Oxidation}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {1}, doi = {10.1002/chem.202004486}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230030}, pages = {444-450}, year = {2021}, abstract = {A cyclic dinuclear ruthenium(bda) (bda: 2,2'-bipyridine-6,6'-dicarboxylate) complex equipped with oligo(ethylene glycol)-functionalized axial calix[4]arene ligands has been synthesized for homogenous catalytic water oxidation. This novel Ru(bda) macrocycle showed significantly increased catalytic activity in chemical and photocatalytic water oxidation compared to the archetype mononuclear reference [Ru(bda)(pic)\(_2\)]. Kinetic investigations, including kinetic isotope effect studies, disclosed a unimolecular water nucleophilic attack mechanism of this novel dinuclear water oxidation catalyst (WOC) under the involvement of the second coordination sphere. Photocatalytic water oxidation with this cyclic dinuclear Ru complex using [Ru(bpy)\(_3\)]Cl\(_2\) as a standard photosensitizer revealed a turnover frequency of 15.5 s\(^{-1}\) and a turnover number of 460. This so far highest photocatalytic performance reported for a Ru(bda) complex underlines the potential of this water-soluble WOC for artificial photosynthesis.}, language = {en} } @article{WuerthnerMezaChinchaSchindleretal.2021, author = {W{\"u}rthner, Frank and Meza-Chincha, Ana-Lucia and Schindler, Dorothee and Natali, Mirco}, title = {Effects of Photosensitizers and Reaction Media on Light-Driven Water Oxidation with Trinuclear Ruthenium Macrocycles}, series = {ChemPhotoChem}, volume = {5}, journal = {ChemPhotoChem}, number = {2}, doi = {10.1002/cptc.202000133}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230116}, pages = {173-183}, year = {2021}, abstract = {Photocatalytic water oxidation is a promising process for the production of solar fuels and the elucidation of factors that influence this process is of high significance. Thus, we have studied in detail light-driven water oxidation with a trinuclear Ru(bda) (bda: 2,2'-bipyridine-6,6'-dicarboxylate) macrocycle MC3 and its highly water soluble derivative m-CH\(_2\)NMe\(_2\)-MC3 using a series of ruthenium tris(bipyridine) complexes as photosensitizers under varied reaction conditions. Our investigations showed that the catalytic activities of these Ru macrocycles are significantly affected by the choice of photosensitizer (PS) and reaction media, in addition to buffer concentration, light intensity and concentration of the sensitizer. Our steady-state and transient spectroscopic studies revealed that the photocatalytic performance of trinuclear Ru(bda) macrocycles is not limited by their intrinsic catalytic activities but rather by the efficiency of photogeneration of oxidant PS\(^+\) and its ability to act as an oxidizing agent to the catalysts as both are strongly dependent on the choice of photosensitizer and the amount of employed organic co-solvent.}, language = {en} } @article{WaechtlerKuebelBarthelmesetal.2016, author = {W{\"a}chtler, Maria and K{\"u}bel, Joachim and Barthelmes, Kevin and Winter, Andreas and Schmiedel, Alexander and Pascher, Torbj{\"o}rn and Lambert, Christoph and Schubert, Ulrich S. and Dietzek, Benjamin}, title = {Energy transfer and formation of long-lived \(^3\)MLCT states in multimetallic complexes with extended highly conjugated bis-terpyridyl ligands}, series = {Physical Chemistry Chemical Physics}, volume = {18}, journal = {Physical Chemistry Chemical Physics}, number = {4}, doi = {10.1039/c5cp04447b}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191041}, pages = {2350-2360}, year = {2016}, abstract = {Multimetallic complexes with extended and highly conjugated bis-2,2':6',2''-terpyridyl bridging ligands, which present building blocks for coordination polymers, are investigated with respect to their ability to act as light-harvesting antennae. The investigated species combine Ru(II)- with Os(II)- and Fe(II)-terpyridyl chromophores, the latter acting as energy sinks. Due to the extended conjugated system the ligands are able to prolong the lifetime of the \(^3\)MLCT states compared to unsubstituted terpyridyl species by delocalization and energetic stabilization of the \(^3\)MLCT states. This concept is applied for the first time to Fe(II) terpyridyl species and results in an exceptionally long lifetime of 23 ps for the Fe(II) \(^3\)MLCT state. While partial energy (>80\%) transfer is observed between the Ru(II) and Fe(II) centers with a time-constant of 15 ps, excitation energy is transferred completely from the Ru(II) to the Os(II) center within the first 200 fs after excitation.}, language = {en} } @article{WuRoldaoRauchetal.2022, author = {Wu, Zhu and Roldao, Juan Carlos and Rauch, Florian and Friedrich, Alexandra and Ferger, Matthias and W{\"u}rthner, Frank and Gierschner, Johannes and Marder, Todd B.}, title = {Pure Boric Acid Does Not Show Room-Temperature Phosphorescence (RTP)}, series = {Angewandte Chemie}, volume = {61}, journal = {Angewandte Chemie}, number = {15}, doi = {10.1002/anie.202200599}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318308}, year = {2022}, abstract = {Boric acid (BA) has been used as a transparent glass matrix for optical materials for over 100 years. However, recently, apparent room-temperature phosphorescence (RTP) from BA (crystalline and powder states) was reported (Zheng et al., Angew. Chem. Int. Ed. 2021, 60, 9500) when irradiated at 280 nm under ambient conditions. We suspected that RTP from their BA sample was induced by an unidentified impurity. Our experimental results show that pure BA synthesized from B(OMe)\(_{3}\) does not luminesce in the solid state when irradiated at 250-400 nm, while commercial BA indeed (faintly) luminesces. Our theoretical calculations show that neither individual BA molecules nor aggregates would absorb light at >175 nm, and we observe no absorption of solid pure BA experimentally at >200 nm. Therefore, it is not possible for pure BA to be excited at >250 nm even in the solid state. Thus, pure BA does not display RTP, whereas trace impurities can induce RTP.}, language = {en} } @article{WuDinkelbachKerneretal.2022, author = {Wu, Zhu and Dinkelbach, Fabian and Kerner, Florian and Friedrich, Alexandra and Ji, Lei and Stepanenko, Vladimir and W{\"u}rthner, Frank and Marian, Christel M. and Marder, Todd B.}, title = {Aggregation-Induced Dual Phosphorescence from (o-Bromophenyl)-Bis(2,6-Dimethylphenyl)Borane at Room Temperature}, series = {Chemistry—A European Journal}, volume = {28}, journal = {Chemistry—A European Journal}, number = {30}, doi = {10.1002/chem.202200525}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318297}, year = {2022}, abstract = {Designing highly efficient purely organic phosphors at room temperature remains a challenge because of fast non-radiative processes and slow intersystem crossing (ISC) rates. The majority of them emit only single component phosphorescence. Herein, we have prepared 3 isomers (o, m, p-bromophenyl)-bis(2,6-dimethylphenyl)boranes. Among the 3 isomers (o-, m- and p-BrTAB) synthesized, the ortho-one is the only one which shows dual phosphorescence, with a short lifetime of 0.8 ms and a long lifetime of 234 ms in the crystalline state at room temperature. Based on theoretical calculations and crystal structure analysis of o-BrTAB, the short lifetime component is ascribed to the T\(^M_1\) state of the monomer which emits the higher energy phosphorescence. The long-lived, lower energy phosphorescence emission is attributed to the T\(^A_1\) state of an aggregate, with multiple intermolecular interactions existing in crystalline o-BrTAB inhibiting nonradiative decay and stabilizing the triplet states efficiently.}, language = {en} }