@article{ZhaoZhangBhuripanyoetal.2013, author = {Zhao, Bo and Zhang, Keya and Bhuripanyo, Karan and Choi, Chan Hee J. and Villhauer, Eric B. and Li, Heng and Zheng, Ning and Kiyokawa, Hiroaki and Schindelin, Hermann and Yin, Jun}, title = {Profiling the Cross Reactivity of Ubiquitin with the Nedd8 Activating Enzyme by Phage Display}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {e70312}, issn = {1932-6203}, doi = {10.1371/journal.pone.0070312}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128479}, year = {2013}, abstract = {The C-terminal peptides of ubiquitin (UB) and UB-like proteins (UBLs) play a key role in their recognition by the specific activating enzymes (E1s) to launch their transfer through the respective enzymatic cascades thus modifying cellular proteins. UB and Nedd8, a UBL regulating the activity of cullin-RING UB ligases, only differ by one residue at their C-termini; yet each has its specific E1 for the activation reaction. It has been reported recently that UAE can cross react with Nedd8 to enable its passage through the UB transfer cascade for protein neddylation. To elucidate differences in UB recognition by UAE and NAE, we carried out phage selection of a UB library with randomized C-terminal sequences based on the catalytic formation of UB similar to NAE thioester conjugates. Our results confirmed the previous finding that residue 72 of UB plays a "gate-keeping" role in E1 selectivity. We also found that diverse sequences flanking residue 72 at the UB C-terminus can be accommodated by NAE for activation. Furthermore heptameric peptides derived from the C-terminal sequences of UB variants selected for NAE activation can function as mimics of Nedd8 to form thioester conjugates with NAE and the downstream E2 enzyme Ubc12 in the Nedd8 transfer cascade. Once the peptides are charged onto the cascade enzymes, the full-length Nedd8 protein is effectively blocked from passing through the cascade for the critical modification of cullin. We have thus identified a new class of inhibitors of protein neddylation based on the profiles of the UB C-terminal sequences recognized by NAE.}, language = {en} } @article{ZadehKhorasaniNolteMuelleretal.2013, author = {Zadeh-Khorasani, Maryam and Nolte, Thomas and Mueller, Thomas D. and Pechlivanis, Markos and Rueff, Franziska and Wollenberg, Andreas and Fricker, Gert and Wolf, Eckhard and Siebeck, Matthias and Gropp, Roswitha}, title = {NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human peripheral blood mononuclear cells as a model to test therapeutics targeting human signaling pathways}, series = {Journal of Translational Medicine}, volume = {11}, journal = {Journal of Translational Medicine}, number = {4}, issn = {1479-5876}, doi = {10.1186/1479-5876-11-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122960}, year = {2013}, abstract = {Background: Animal models of human inflammatory diseases have limited predictive quality for human clinical trials for various reasons including species specific activation mechanisms and the immunological background of the animals which markedly differs from the genetically heterogeneous and often aged patient population. Objective: Development of an animal model allowing for testing therapeutics targeting pathways involved in the development of Atopic Dermatitis (AD) with better translatability to the patient. Methods: NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human peripheral blood mononuclear cells (hPBMC) derived from patients suffering from AD and healthy volunteers were treated with IL-4 and the antagonistic IL-4 variant R121/Y124D (Pitrakinra). Levels of human (h) IgE, amount of B-, T- and plasma-cells and ratio of CD4 : CD8 positive cells served as read out for induction and inhibition of cell proliferation and hIgE secretion. Results were compared to in vitro analysis. Results: hIgE secretion was induced by IL-4 and inhibited by the IL-4 antagonist Pitrakinra in vivo when formulated with methylcellulose. B-cells proliferated in response to IL-4 in vivo; the effect was abrogated by Pitrakinra. IL-4 shifted CD4 : CD8 ratios in vitro and in vivo when hPBMC derived from healthy volunteers were used. Pitrakinra reversed the effect. Human PBMC derived from patients with AD remained inert and engrafted mice reflected the individual responses observed in vitro. Conclusion: NOD-scid IL2R \(\gamma^{null}\) mice engrafted with human PBMC reflect the immunological history of the donors and provide a complementary tool to in vitro studies. Thus, studies in this model might provide data with better translatability from bench to bedside.}, language = {en} } @article{WippelMaurerFortschetal.2013, author = {Wippel, Carolin and Maurer, Jana and Fortsch, Christina and Hupp, Sabrina and Bohl, Alexandra and Ma, Jiangtao and Mitchell, Timothy J. and Bunkowski, Stephanie and Br{\"u}ck, Wolfgang and Nau, Roland and Iliev, Asparouh I.}, title = {Bacterial Cytolysin during Meningitis Disrupts the Regulation of Glutamate in the Brain, Leading to Synaptic Damage}, series = {PLoS Pathogens}, volume = {9}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1003380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130462}, pages = {e1003380}, year = {2013}, abstract = {Abstract Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage. Author Summary Bacterial meningitis is one of the most devastating brain diseases. Among the bacteria that cause meningitis, Streptococcus pneumoniae is the most common. Meningitis predominantly affects children, especially in the Third World, and most of them do not survive. Those that do survive often suffer permanent brain damage and hearing problems. The exact morphological substrates of brain damage in Streptococcus pneumoniae meningitis remain largely unknown. In our experiments, we found that the brain cortex of patients with meningitis demonstrated a loss of synapses (the contact points among neurons, responsible for the processes of learning and memory), and we identified the major pneumococcal neurotoxin pneumolysin as a sufficient cause of this loss. The effect was not direct but was mediated by the brain neurotransmitter glutamate, which was released upon toxin binding by one of the non-neuronal cell types of the brain - the astrocytes. Pneumolysin initiated calcium influx in astrocytes and subsequent glutamate release. Glutamate damaged the synapses via NMDA-receptors - a mechanism similar to the damage occurring in brain ischemia. Thus, we show that synaptic loss is present in pneumococcal meningitis, and we identify the toxic bacterial protein pneumolysin as the major factor in this process. These findings alter our understanding of bacterial meningitis and establish new therapeutic strategies for this fatal disease.}, language = {en} } @article{WeibelBasseLuesebrinkHessetal.2013, author = {Weibel, Stephanie and Basse-Luesebrink, Thomas Christian and Hess, Michael and Hofmann, Elisabeth and Seubert, Carolin and Langbein-Laugwitz, Johanna and Gentschev, Ivaylo and Sturm, Volker J{\"o}rg Friedrich and Ye, Yuxiang and Kampf, Thomas and Jakob, Peter Michael and Szalay, Aladar A.}, title = {Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by \(^{19}\)F-Magnetic Resonance Imaging (MRI)}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0056317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130311}, pages = {e56317}, year = {2013}, abstract = {Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate \(^{19}\)F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by \(^1H\)/\(^{19}\)F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the \(^{19}\)F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the \(^{19}\)F signal hot spots and \(CD68^+\)-macrophages. Thereby, the \(CD68^+\)-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the \(^{19}\)F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest \(^{19}\)F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, \(^{19}\)F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response.}, language = {en} } @article{TimofeevSchlerethWanzeletal.2013, author = {Timofeev, Oleg and Schlereth, Katharina and Wanzel, Michael and Braun, Attila and Nieswandt, Bernhard and Pagenstecher, Axel and Rosenwald, Andreas and Els{\"a}sser, Hans-Peter and Stiewe, Thorsten}, title = {p53 DNA Binding Cooperativity Is Essential for Apoptosis and Tumor Suppression In Vivo}, series = {Cell Reports}, volume = {3}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2013.04.008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122168}, pages = {1512-1525}, year = {2013}, abstract = {Four molecules of the tumor suppressor p53 assemble to cooperatively bind proapoptotic target genes. The structural basis for cooperativity consists of interactions between adjacent DNA binding domains. Mutations at the interaction interface that compromise cooperativity were identified in cancer patients, suggesting a requirement of cooperativity for tumor suppression. We report on an analysis of cooperativity mutant p53(E177R) mice. Apoptotic functions of p53 triggered by DNA damage and oncogenes were abolished in these mice, whereas functions in cell-cycle control, senescence, metabolism, and antioxidant defense were retained and were sufficient to suppress development of spontaneous T cell lymphoma. Cooperativity mutant mice are nevertheless highly cancer prone and susceptible to different oncogene-induced tumors. Our data underscore the relevance of DNA binding cooperativity for p53-dependent apoptosis and tumor suppression and highlight cooperativity mutations as a class of p53 mutations that result in a selective loss of apoptotic functions due to an altered quaternary structure of the p53 tetramer.}, language = {en} } @article{TessmerKaurLinetal.2013, author = {Tessmer, Ingrid and Kaur, Parminder and Lin, Jiangguo and Wang, Hong}, title = {Investigating bioconjugation by atomic force microscopy}, series = {Journal of Nanobiotechnology}, volume = {11}, journal = {Journal of Nanobiotechnology}, number = {25}, doi = {10.1186/1477-3155-11-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129477}, year = {2013}, abstract = {Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures.}, language = {en} } @article{SzalayWeibelHofmannetal.2013, author = {Szalay, Aladar A and Weibel, Stephanie and Hofmann, Elisabeth and Basse-Luesebrink, Thomas Christian and Donat, Ulrike and Seubert, Carolin and Adelfinger, Marion and Gnamlin, Prisca and Kober, Christina and Frentzen, Alexa and Gentschev, Ivaylo and Jakob, Peter Michael}, title = {Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer}, series = {Journal of Translational Medicine}, journal = {Journal of Translational Medicine}, doi = {doi:10.1186/1479-5876-11-106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96016}, year = {2013}, abstract = {Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer.}, subject = {Lungenkrebs}, language = {en} } @article{SoehnleinDrechslerDoeringetal.2013, author = {Soehnlein, Oliver and Drechsler, Maik and D{\"o}ring, Yvonne and Lievens, Dirk and Hartwig, Helene and Kemmerich, Klaus and Ortega-G{\´o}mez, Almudena and Mandl, Manuela and Vijayan, Santosh and Projahn, Delia and Garlichs, Christoph D. and Koenen, Rory R. and Hristov, Mihail and Lutgens, Esther and Zernecke, Alma and Weber, Christian}, title = {Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes}, series = {EMBO Molecular Medicine}, volume = {5}, journal = {EMBO Molecular Medicine}, issn = {1757-4676}, doi = {10.1002/emmm.201201717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122204}, pages = {471-481}, year = {2013}, abstract = {We used a novel approach of cytostatically induced leucocyte depletion and subsequent reconstitution with leucocytes deprived of classical \((inflammatory/Gr1^{hi})\) or non-classical \((resident/Gr1^{lo})\) monocytes to dissect their differential role in atheroprogression under high-fat diet (HFD). Apolipoprotein E-deficient \((Apoe^{-/-})\) mice lacking classical but not non-classical monocytes displayed reduced lesion size and macrophage and apoptotic cell content. Conversely, HFD induced a selective expansion of classical monocytes in blood and bone marrow. Increased CXCL1 levels accompanied by higher expression of its receptor CXCR2 on classical monocytes and inhibition of monocytosis by CXCL1-neutralization indicated a preferential role for the CXCL1/CXCR2 axis in mobilizing classical monocytes during hypercholesterolemia. Studies correlating circulating and lesional classical monocytes in gene-deficient \(Apoe^{-/-}\) mice, adoptive transfer of gene-deficient cells and pharmacological modulation during intravital microscopy of the carotid artery revealed a crucial function of CCR1 and CCR5 but not CCR2 or \(CX_3CR1\) in classical monocyte recruitment to atherosclerotic vessels. Collectively, these data establish the impact of classical monocytes on atheroprogression, identify a sequential role of CXCL1 in their mobilization and CCR1/CCR5 in their recruitment.}, language = {en} } @article{SirenStetterHirschbergetal.2013, author = {Sir{\´e}n, Anna-Leena and Stetter, Christian and Hirschberg, Markus and Nieswandt, Bernhard and Ernestus, Ralf-Ingo and Heckmann, Manfred}, title = {An experimental protocol for in vivo imaging of neuronal structural plasticity with 2-photon microscopy in mice}, series = {Experimental \& Translational Stroke Medicine}, journal = {Experimental \& Translational Stroke Medicine}, doi = {10.1186/2040-7378-5-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96908}, year = {2013}, abstract = {Introduction Structural plasticity with synapse formation and elimination is a key component of memory capacity and may be critical for functional recovery after brain injury. Here we describe in detail two surgical techniques to create a cranial window in mice and show crucial points in the procedure for long-term repeated in vivo imaging of synaptic structural plasticity in the mouse neocortex. Methods Transgenic Thy1-YFP(H) mice expressing yellow-fluorescent protein (YFP) in layer-5 pyramidal neurons were prepared under anesthesia for in vivo imaging of dendritic spines in the parietal cortex either with an open-skull glass or thinned skull window. After a recovery period of 14 days, imaging sessions of 45-60 min in duration were started under fluothane anesthesia. To reduce respiration-induced movement artifacts, the skull was glued to a stainless steel plate fixed to metal base. The animals were set under a two-photon microscope with multifocal scanhead splitter (TriMScope, LaVision BioTec) and the Ti-sapphire laser was tuned to the optimal excitation wavelength for YFP (890 nm). Images were acquired by using a 20×, 0.95 NA, water-immersion objective (Olympus) in imaging depth of 100-200 μm from the pial surface. Two-dimensional projections of three-dimensional image stacks containing dendritic segments of interest were saved for further analysis. At the end of the last imaging session, the mice were decapitated and the brains removed for histological analysis. Results Repeated in vivo imaging of dendritic spines of the layer-5 pyramidal neurons was successful using both open-skull glass and thinned skull windows. Both window techniques were associated with low phototoxicity after repeated sessions of imaging. Conclusions Repeated imaging of dendritic spines in vivo allows monitoring of long-term structural dynamics of synapses. When carefully controlled for influence of repeated anesthesia and phototoxicity, the method will be suitable to study changes in synaptic structural plasticity after brain injury.}, language = {en} } @phdthesis{Schiebel2013, author = {Schiebel, Johannes}, title = {Structure-Based Drug Design on Enzymes of the Fatty Acid Biosynthesis Pathway}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69239}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {W{\"a}hrend die Wirkung der meisten gebr{\"a}uchlichen Antibiotika auf einer Beeintr{\"a}chtigung wichtiger bakterieller Prozesse beruht, wirken manche Substanzen durch die St{\"o}rung der Zellmembran-Struktur. Da Fetts{\"a}uren ein essentieller Bestandteil von Membran-Phospholipiden sind, stellt die bakterielle Fetts{\"a}urebiosynthese II (FAS-II) einen relativ wenig erforschten, aber dennoch vielversprechenden Angriffspunkt f{\"u}r die Entwicklung neuer Antibiotika dar. Das wichtige Antituberkulotikum Isoniazid blockiert die mykobakterielle Fetts{\"a}urebiosynthese und ruft dadurch morphologische {\"A}nderungen sowie letztlich die Lyse des Bakteriums hervor. Eine wichtige Erkenntnis war, dass Isoniazid den letzten Schritt des FAS-II Elongationszyklus inhibiert, der durch die Enoyl-ACP Reduktase katalysiert wird. Darauf aufbauend wurden mehrere Programme ins Leben gerufen, die sich zum Ziel gesetzt hatten, neue Molek{\"u}le zu entwickeln, welche dieses Protein verschiedener Pathogene hemmen. Die S. aureus Enoyl-ACP Reduktase (saFabI) ist von besonders großem Interesse, da drei vielversprechende Inhibitoren dieses Proteins entwickelt werden konnten, die momentan in klinischen Studien eingehend untersucht werden. Trotz dieser Erfolgsaussichten waren zum Zeitpunkt, als die vorliegenden Arbeiten aufgenommen wurden, keine Kristallstrukturen von saFabI {\"o}ffentlich verf{\"u}gbar. Daher war es eines der Hauptziele dieser Doktorarbeit, auf der Basis von kristallographischen Experimenten atomar aufgel{\"o}ste Modelle f{\"u}r dieses wichtige Protein zu erzeugen. Durch die Entwicklung einer verl{\"a}sslichen Methode zur Kristallisation von saFabI im Komplex mit NADP+ und Diphenylether-Inhibitoren konnten Kristallstrukturen von 17 verschiedenen tern{\"a}ren Komplexen gel{\"o}st werden. Weitere kristallographische Experimente ergaben zwei apo-Strukturen sowie zwei Strukturen von saFabI im Komplex mit NADPH und 2-Pyridon-Inhibitoren. Basierend auf der nun bekannten saFabI-Struktur konnten Molekulardynamik-Simulationen durchgef{\"u}hrt werden, um zus{\"a}tzliche Erkenntnisse {\"u}ber die Flexibilit{\"a}t dieses Proteins zu erhalten. Die so gewonnenen Informationen {\"u}ber die Struktur und Beweglichkeit des Enzyms dienten in Folge als ideale Grundlage daf{\"u}r, den Erkennungsprozess von Substrat und Inhibitor zu verstehen. Besonders bemerkenswert dabei ist, dass die verschiedenen saFabI Kristallstrukturen Momentaufnahmen entlang der Reaktionskoordinate der Ligandenbindung und des Hydrid-Transfers repr{\"a}sentieren. Dabei verschließt der so genannte Substratbindungsloop das aktive Zentrum des Enzyms allm{\"a}hlich. Die außergew{\"o}hnlich hohe Mobilit{\"a}t von saFabI konnte durch molekulardynamische Simulationen best{\"a}tigt werden. Dies legt nahe, dass die beobachteten {\"A}nderungen der Konformation tats{\"a}chlich an der Aufnahme und Umsetzung des Substrates beteiligt sind. Eine Kette von Wassermolek{\"u}len zwischen dem aktiven Zentrum und einer wassergef{\"u}llten Kavit{\"a}t im Inneren des Tetramers scheint f{\"u}r die Beweglichkeit des Substratbindungsloops und somit f{\"u}r die katalysierte Reaktion von entscheidender Bedeutung zu sein. Außerdem wurde die erstaunliche Beobachtung gemacht, dass der adaptive Substratbindungsprozess mit einem Dimer-Tetramer {\"U}bergang gekoppelt ist, welcher die beobachtete positive Kooperativit{\"a}t der Ligandenbindung erkl{\"a}ren kann. Alles in allem weist saFabI im Vergleich zu FabI Proteinen aus anderen Organismen mehrere außergew{\"o}hnliche Eigenschaften auf, die f{\"u}r die Synthese von verzweigten Fetts{\"a}uren n{\"o}tig sein k{\"o}nnten, welche wiederum f{\"u}r die {\"U}berlebensf{\"a}higkeit von S. aureus im Wirt von Bedeutung sind. Diese Erkenntnis k{\"o}nnte erkl{\"a}ren, warum S. aureus selbst bei Anwesenheit von exogenen Fetts{\"a}uren von FAS-II Inhibitoren abget{\"o}tet werden kann. Somit k{\"o}nnen die gewonnenen atomaren saFabI Modelle einen entscheidenden Beitrag zur Entwicklung neuer Hemmstoffe dieses validierten Angriffszieles leisten. Tats{\"a}chlich konnten die neuen Strukturen genutzt werden, um die Bindungsst{\"a}rken sowie die Verweilzeiten verschiedener saFabI Inhibitoren molekular zu erkl{\"a}ren. Die Struktur von saFabI im Komplex mit dem 2-Pyridon Inhibitor CG400549 hingegen enth{\"u}llte spezifische Wechselwirkungen in der geweiteten Bindetasche des S. aureus Enzyms, welche das geringe Aktivit{\"a}tsspektrum dieses derzeit klinisch erprobten Inhibitors erkl{\"a}ren. Diese Studien schaffen somit eine ideale Voraussetzung f{\"u}r die Entwicklung neuer wirksamer saFabI Inhibitoren, was am Beispiel des 4-Pyridons PT166 belegt werden kann. Im Rahmen der vorliegenden Dissertation konnten außerdem die Strukturen des Enzyms KasA im Komplex mit mehreren Derivaten des Naturstoffs Thiolactomycin gel{\"o}st werden.}, subject = {Staphylococcus aureus}, language = {en} }