@article{SiwkaSchwinnBaczkoetal.1994, author = {Siwka, Wieslaw and Schwinn, Andreas and Baczko, Knut and Pardowitz, Iancu and Mhalu, Fred and Shao, John and Rethwilm, Axel and ter Meulen, Volker}, title = {vpu and env sequence variability of HIV-1 isolates from Tanzania}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61355}, year = {1994}, abstract = {No abstract available}, subject = {Virologie}, language = {en} } @article{SchneiderSchauliesSchnorrDunsteretal.1994, author = {Schneider-Schaulies, Sibylle and Schnorr, J.-J. and Dunster, L. M. and Schneider-Schaulies, J{\"u}rgen and ter Meulen, Volker}, title = {The role of host factors in measles virus persistence}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54944}, year = {1994}, abstract = {As critical steps in the life cycle oJ measles virus (Mfl), the e.fficiency of uptake into and replication in susceptible host cells are governed by cellular determinants. Measles virus infections of cells of the human CNS are characterized by particular constraints imposed on v1:ral transcription and translation attenuating viral gene Junctions and thus contributing to the pathogenesis oJ MV persistence in these cells.}, subject = {Immunologie}, language = {en} } @article{SegevRagerZismanIsakovetal.1994, author = {Segev, Y. and Rager-Zisman, B. and Isakov, N. and Schneider-Schaulies, Sibylle and ter Meulen, V. and Udem, S. A. and Segal, S. and Wolfson, M.}, title = {Reversal of measles virus mediated increase of phosphorylating activity in persistently infected mouse neuroblastoma cells by anti measles antibodies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62362}, year = {1994}, abstract = {No abstract available}, subject = {Virologie}, language = {en} } @article{HahnBaunachBraeutigametal.1994, author = {Hahn, Heidi and Baunach, Gerald and Br{\"a}utigam, Sandra and Mergia, Ayalew and Neumann-Haefelin, Dieter and Daniel, Muthiah D. and McClure, Myra O. and Rethwilm, Axel}, title = {Reactivity of primate sera to foamy virus Gag and Bet proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61366}, year = {1994}, abstract = {In order to establish criteria for the Serodiagnosis of foamy virus infections we investigated the extent to which sera from iofected individuals of human and primate origin react with structural and non-structural virus proteins in immunoblot assays. Using lysates from infected cells as the source of virus antigen, antibodies were preferentially detected against the Gag proteins and the non-structural Bet protein. Both the Gag precursor molecules of 70 and 74K apparent M\(_r\) and the cytoplasmic 60K M\(_r\) Bet protein were found to be phosphorylated, the latter being synthesized in large amounts in infected cells. Rahbit antiserum raised against recombinant human foamy virus (HFV) Gag major capsid protein cross-reacted with foamy viruses of chimpanzee, gorilla, orang-utan, rhesus monkey and Mrican green monkey origin. This was reßected by a broad cross-reactivity of the respective monkey sera to the Gag proteins of the various foamy virus isolates. Cross-reactivity of antisera against the Bet protein was restricted to viruses from man and the great apes. Recombinant Gag and Bet proteins expressed in prokaryotes or in insect cells were readily recognized by foamy virus-positive primate sera. Screening serum samples from chimpanzees with HFV Gag and Bet proteins expressed by recombinant baculoviruses revealed that 18 out of 35 (52\%) were positive for Gag antibodies. Of these, 13 (72 o/o) showed antiborlies against the Bet protein, indicating that Bet antigen is of value in sero1ogical screening for foamy virus infections.}, subject = {Virologie}, language = {en} } @article{SchliephakeRethwilm1994, author = {Schliephake, Andreas W. and Rethwilm, Axel}, title = {Nuclear Localization of Foamy Virus Gag Precursor Protein}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61371}, year = {1994}, abstract = {All foamy viruses give rise to a strong nuclear staining when infected cells are reacted with sera from infected hosts. This nuclear ftuorescence distinguishes foamy viruses from all other retroviruses. The experiments reported here indicate that the foamy virus Gag precursor protein is transiently located in the nuclei of infected cells and this is the likely reason for the typical foamy virus nuclear fluorescence. By using the vaccinia virus expression system, a conserved basic sequence motif in the nucleocapsid domain of foamy virus Cag proteins was identified to be responsible for the nuclear transport of the gag precursor molecule. Tbis motif was also found to be able to direct a heterologous protein, the Gag protein of human immunodeficiency virus, into the nucleus.}, subject = {Virologie}, language = {en} } @article{DunsterSchneiderSchauliesLoeffleretal.1994, author = {Dunster, L.M. and Schneider-Schaulies, J{\"u}rgen and L{\"o}ffler, S. and Lankes, W. and Schwartz-Albiez, R. and Lottspeich, F. and ter Meulen, V.}, title = {Moesin: a cell membrane protein linked with susceptibility to measles virus infection}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54931}, year = {1994}, abstract = {Measles virus is a highly contagious virus causing acute and persistent diseases in man, the receptor of which is still not weil characterized. We have isolated a monoclonal antibody (mAb), designated mAb 119, which specifically inhibits measles virus infection of susceptible celllines in a dosa-dependent manner. This antibody precipitates a protein with an apparent molecular mass of 75 kDa from 1251 surface-labeled cells and its epitope is present on human peripheral blood mononuclear cells, human celllines, and the African green monkey cellline Vero. Affinity chromatography of detergent-solubilized cell membrane proteins over a Sepharose column with covalently bound mAb 119 led to the partial purification of the 75-kOa protein. Preincubation of measles virus with this affinity-purified protein inhibited measles virus infection dose dependently. Aminoacid microseq,uencing of this protein revealed its identity with the human membrane-organizing extension spike protein moesin, a protein intra- and extracellularly associated with the plasma membrane of cells. Subsequently, an antibody raised against purified moesin (mAb 38/87) was also found to specifically inhibit measles virus infection of susceptible cells and confirmed our data obtained with mAb 119. Our data suggest that moesin is acting as a receptor for measles virus.}, subject = {Immunologie}, language = {en} } @article{ProbstmeierBilzSchneiderSchaulies1994, author = {Probstmeier, R. and Bilz, A. and Schneider-Schaulies, J{\"u}rger}, title = {Expression of the neural cell adhesion molecule and polysialic acid during early mouse embryogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-54921}, year = {1994}, abstract = {The expression of the neural cell adhesion molccule (N-CAM) and a 2-8 linked polysialic acid (PSA), whieh is believed to be predominantly expressed on N-CAM, was investigated during early embryonie development ofthe mouse (embryonic days 7.5 to 10.0). By immunoeytoehemistry, in tissue sections, N-CAM and PSA were not detectable at embryonie day 7.5 but were expressed in the prominent body regions such as somites, unsegmented mesoderm, developing heart, and neuroectoderm at embryonie day 8.0 N-CAM and PSA immunoreaetivities were always predominantly associated with tbe plasma membrane. No tissue could be detected which was positive for PSA but negative for N-CAM. In Western blot analysis of whole embryos, by contrast, only the lightly sialylated and PSA-negative 180 and 140 kD isoforms of N-CAM werc present at embryonie day 8.0 and strong expression of PSA-bearing, heavily sialylated N-CAM was not detectable before embryonie day 10.0. In Western blot analysis of N-CAM immunoaffinity purifled from whole embryos and digested with neuraminidase as weil as in Northern blot analysis, the 120 kD isoform of N-CAM or its eorresponding mRN A were not expressed in detectable amounts during the time period investigated.}, subject = {Immunologie}, language = {en} } @article{SchneiderSchauliesSchneiderSchauliesSchusteretal.1994, author = {Schneider-Schaulies, Sibylle and Schneider-Schaulies, J{\"u}rgen and Schuster, A. and Bayer, M. and Pavlovic, J. and ter Meulen, V.}, title = {Cell type specific MxA-mediated inhibition of measles virus transcription in human brain cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62255}, year = {1994}, abstract = {No abstract available}, subject = {Virologie}, language = {en} } @article{SchneiderSchauliesSchneiderSchauliesSchusteretal.1994, author = {Schneider-Schaulies, J{\"u}rgen and Schneider-Schaulies, S. and Schuster, A. and Bayer, M. and Pavlovic, J. and ter Meulen, V.}, title = {Cell type specific MxA-mediated inhibition of measles virus transcription in human brain cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34313}, year = {1994}, abstract = {Measles virus (MV)-specific transcription in human brain cells is characterized by particularly low abundances of the distal mRNAs encoding the MV envelope proteins. Similar transcriptional restrictions of the closely related vesicular stomatitis virus have been observed in mouse fibroblasts constitutively expressing the interferon-inducible MxA protein (P. Staeheli and J. Pavlovic, J. Virol. 65:4498-4501, 1991). We found that MV infection of human brain cells is accompanied by rapid induction and high-level expression of endogenous MxA proteins. After stable transfection of MxA, human glioblastoma cells (U-87-MxA) released 50- to 100-fold less infectious virus and expression of viral proteinswas highly restricted. The overall MV-specific transcription Ievels were reduced by up to 90\%, accompanied by low relative frequencies of the distal MV-specific mRNAs. These restrictions were linked to an inhibition of viral RNA synthesis and not to a decreased stability of the viral RNAs. Our results indicate that expression of MxA is associated with transcriptional attenuation of MV in brain cells, thus probably contributing to the establishment of persistent MV central nervous system infections. In addition, the mechanism of MxA-dependent resistance against MV infection, in contrast to that of vesicular Stomatitis virus, is cell type specific, because an inhibition of MV glycoprotein synthesis independent of transcriptional alterations was observed in MxA-transfected human monocytes}, language = {en} } @article{MaisnerSchneiderSchauliesLiszewskietal.1994, author = {Maisner, A. and Schneider-Schaulies, J{\"u}rgen and Liszewski, M.K. and Atkinson, J.P. and Herrler, G.}, title = {Binding of measles virus to membrane cofactor protein (CD46): importance of disulfide bonds and N-glycans for the receptor function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34324}, year = {1994}, abstract = {Two cellular proteins, membrane cofactor protein (MCP) and moesin, were reported recently to be functionally associated with the initiation of a measles virus infection. We bave analyzed the interaction of measles virus with cell surface proteins, using an overlay binding assay with cellular proteins immobilized on nitrocellulose. Among surface-biotinylated proteins from a human rectal tumor cellline (HRT), measles virus, was able to bind only to a 67-kDa proteinthat was identified as MCP. The virus recognized dift'erent isoforms of MCP expressed from human (HRT and HeLa) and simian (Vero) celllines. The binding of measles virus to MCP was abolished after cleavage of the disulfide bonds by reducing agents as weil as after enzymatic release of N-linked oligosaccharides. By contrast, removal of sialic acid or 0-linked oligosaccharides did not aft'ect the recognition of MCP by measles virus. These data indicate that the receptor determinant of MCP is dependent on a conformation of the protein that is maintained by disulfide bonds and N-glycans present in tbe complement binding domains. Our results are consistent with a roJe of MCP as primary attacbment site for measles virus in the initial stage of an infection. The functional relationship between MCP and moesin in a measles virus infection is discussed.}, language = {en} }