@article{BaeuerleinRiedelBakeretal.2013, author = {B{\"a}uerlein, Carina A. and Riedel, Simone S. and Baker, Jeanette and Brede, Christian and Jord{\´a}n Garrote, Ana-Laura and Chopra, Martin and Ritz, Miriam and Beilhack, Georg F. and Schulz, Stephan and Zeiser, Robert and Schlegel, Paul G. and Einsele, Hermann and Negrin, Robert S. and Beilhack, Andreas}, title = {A diagnostic window for the treatment of acute graft-versus-host disease prior to visible clinical symptoms in a murine model}, series = {BMC Medicine}, journal = {BMC Medicine}, doi = {10.1186/1741-7015-11-134}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96797}, year = {2013}, abstract = {Background Acute graft-versus-host disease (aGVHD) poses a major limitation for broader therapeutic application of allogeneic hematopoietic cell transplantation (allo-HCT). Early diagnosis of aGVHD remains difficult and is based on clinical symptoms and histopathological evaluation of tissue biopsies. Thus, current aGVHD diagnosis is limited to patients with established disease manifestation. Therefore, for improved disease prevention it is important to develop predictive assays to identify patients at risk of developing aGVHD. Here we address whether insights into the timing of the aGVHD initiation and effector phases could allow for the detection of migrating alloreactive T cells before clinical aGVHD onset to permit for efficient therapeutic intervention. Methods Murine major histocompatibility complex (MHC) mismatched and minor histocompatibility antigen (miHAg) mismatched allo-HCT models were employed to assess the spatiotemporal distribution of donor T cells with flow cytometry and in vivo bioluminescence imaging (BLI). Daily flow cytometry analysis of peripheral blood mononuclear cells allowed us to identify migrating alloreactive T cells based on homing receptor expression profiles. Results We identified a time period of 2 weeks of massive alloreactive donor T cell migration in the blood after miHAg mismatch allo-HCT before clinical aGVHD symptoms appeared. Alloreactive T cells upregulated α4β7 integrin and P-selectin ligand during this migration phase. Consequently, targeted preemptive treatment with rapamycin, starting at the earliest detection time of alloreactive donor T cells in the peripheral blood, prevented lethal aGVHD. Conclusions Based on this data we propose a critical time frame prior to the onset of aGVHD symptoms to identify alloreactive T cells in the peripheral blood for timely and effective therapeutic intervention.}, language = {en} } @phdthesis{KannenCardoso2013, author = {Kannen Cardoso, Vinicius}, title = {The role of Fluoxetine against preneoplastic lesions and tumors in colon tissue}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77589}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Introduction: Colon cancer is one of the major human malignancies worldwide, and much effort has been applied to understand the process of colon carcinogenesis, as well as the role of potential treatments and co-therapeutical agents against it. A growing body of evidence suggests that the use of fluoxetine (FLX), an antidepressant belonging to the selective serotonin reuptake inhibitors (SSRIs), may be associated with a reduced colon cancer risk. However, controversial opinions have been published and an identification of the mechanisms of the activity of FLX on colon cells would help in the clarification of this controversy. Objectives: Using several in vitro and in vivo-based methods and analyses, we aimed to verify whether FLX has antioxidant, pro-oxidant or DNA-damaging potential in standard toxicological assays; to check whether and how FLX could prevent and reduce colon preneoplastic lesions; to ascertain whether FLX has any oncostatic potential against colon tumors; and, to investigate whether FLX activity could be comparable with a known and current applied chemotherapeutic agent against colon cancer. Results: FLX did not have any antioxidant potential in our experiments. Although it did not induce reactive oxygen species (ROS) generation or DNA-damage in fibroblast and colon tumor cell lines, FLX reduced dysplasia and proliferation in two different carcinogen models. Further, a significant decrease in colon stromal reactivity and angiogenesis was found in both carcinogen-induced preneoplasia models. In a xenograft model of colon cancer, FLX shrank tumors, reduced tumor proliferation, arrested cancer cells at the G0/G1 cell-cycle phase, and took ROS generation under control. Such effects were detected together with an intracellular acidification and loss of mitochondrial membrane potential in FLX-treated cells. Modulating mitochondrial respiratory chain, HIF-1 expression and Akt/mTOR signaling pathway, FLX was found to reduce colon tumors similar to the widely used chemotherapeutic agent 5-Fluoracil activity. Conclusion: Our collective data suggest that FLX is a remarkable chemopreventive and oncostatic agent against colon preneoplastic lesions and tumors, acting without DNA-damage or ROS generation.}, subject = {Fluoxetin}, language = {en} } @phdthesis{Riedel2013, author = {Riedel, Simone Stefanie}, title = {Characterization of the fluorescence protein FP635 for in vivo imaging and establishment of a murine multiple myeloma model for non-invasive imaging of disease progression and response to therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77894}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Optical in vivo imaging methods have advanced the fields of stem cell transplantation, graft-versus-host disease and graft-versus-tumor responses. Two well known optical methods, based on the transmission of light through the test animal are bioluminescence imaging (BLI) and fluorescence imaging (FLI). Both methods allow whole body in vivo imaging of the same animal over an extended time span where the cell distribution and proliferation can be visualized. BLI has the advantages of producing almost no unspecific background signals and no necessity for external excitation light. Hence, BLI is a highly sensitive and reliable detection method. Yet, the BLI reporter luciferase is not applicable with common microscopy techniques, therefore abolishing this method for cellular resolution imaging. FLI in turn, presents the appealing possibility to use one fluorescent reporter for whole body imaging as well as cellular resolution applying microscopy techniques. The absorption of light occurs mainly due to melanin and hemoglobin in wavelengths up to 650 nm. Therefore, the wavelength range beyond 650 nm may allow sensitive optical imaging even in deep tissues. For this reason, significant efforts are undertaken to isolate or develop genetically enhanced fluorescent proteins (FP) in this spectral range. "Katushka" also called FP635 has an emission close to this favorable spectrum and is reported as one of the brightest far-red FPs. Our experiments also clearly showed the superiority of BLI for whole body imaging over FLI. Based on these results we applied the superior BLI technique for the establishment of a pre-clinical multiple myeloma (MM) mouse model. MM is a B-cell disease, where malignant plasma cells clonally expand in the bone marrow (BM) of older people, causing significant morbidity and mortality. Chromosomal abnormalities, considered a hallmark of MM, are present in nearly all patients and may accumulate or change during disease progression. The diagnosis of MM is based on clinical symptoms, including the CRAB criteria: increased serum calcium levels, renal insufficiency, anemia, and bone lesions (osteolytic lesions or osteoporosis with compression fractures). Other clinical symptoms include hyperviscosity, amyloidosis, and recurrent bacterial infections. Additionally, patients commonly exhibit more than 30\% clonal BM plasma cells and the presence of monoclonal protein is detected in serum and/or urine. With current standard therapies, MM remains incurable and patients diagnosed with MM between 2001 and 2007 had a 5-year relative survival rate of only 41\%. Therefore, the development of new drugs or immune cell-based therapies is desirable and necessary. To this end we developed the MOPC-315 cell line based syngeneic MM mouse model. MOPC-315 cells were labeled with luciferase for in vivo detection by BLI. We validated the non-invasively obtained BLI data with histopathology, measurement of idiotype IgA serum levels and flow cytometry. All methods affirmed the reliability of the in vivo BLI data for this model. We found that this orthotopic MM model reflects several key features of the human disease. MOPC-315 cells homed efficiently to the BM compartment including subsequent proliferation. Additionally, cells disseminated to distant skeletal parts, leading to the typical multifocal MM growth. Osteolytic lesions and bone remodeling was also detected. We found evidence that the cell line had retained plasticity seen by dynamic receptor expression regulation in different compartments such as the BM and the spleen.}, subject = {Fluoreszenzproteine}, language = {en} } @phdthesis{Fronhofer2013, author = {Fronhofer, Emanuel Alexis}, title = {Beyond classical metapopulations: trade-offs and information use in dispersal ecology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85816}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {All animal and plant species must disperse in order to survive. Although this fact may seem trivial, and the importance of the dispersal process is generally accepted, the eco-evolutionary forces influencing dispersal, and the underlying movement elements, are far from being comprehensively understood. Beginning in the 1950s scientists became aware of the central role of dispersal behaviour and landscape connectivity for population viability and species diversity. Subsequently, dispersal has mainly been studied in the context of metapopulations. This has allowed researchers to take into account the landscape level, e.g. for determining conservation measures. However, a majority of theses studies classically did not include dispersal evolution. Yet, it is well known that dispersal is subject to evolution and that this process may occur (very) rapidly, i.e. over short ecological time-scales. Studies that do take dispersal evolution into account, mostly focus on eco-evolutionary forces arising at the level of populations - intra-specific competition or Allee effects, for example - and at the level of landscapes - e.g. connectivity, patch area and fragmentation. Yet, relevant ecological and evolutionary forces can emerge at all levels of biological complexity, from genes and individuals to populations, communities and landscapes. Here, I focus on eco-evolutionary forces arising at the gene- and especially at the individual level. Combining individual-based modelling and empirical field work, I explicitly analyse the influence of mobility trade-offs and information use for dispersal decisions - i.e. individual level factors - during the three phases of dispersal - emigration, transfer and immigration. I additionally take into account gene level factors such as ploidy, sexual reproduction (recombination) and dominance. Mobility-fertility trade-offs may shape evolutionarily stable dispersal strategies and lead to the coexistence of two or more dispersal strategies, i.e. polymorphisms and polyphenisms. This holds true for both dispersal distances (chapter 3) and emigration rates (chapter 4). In sessile organisms - such as trees or corals - maternal investment, i.e. transgenerational trade-offs between maternal fertility and propagule dispersiveness, can be the cause of bimodal and fat-tailed dispersal kernels. However, the coexistence of two or more dispersal strategies may be critically dependent on gene level factors, such as ploidy or dominance (chapter 4). Passively dispersing individuals may realize such multimodal dispersal kernels by mixing different dispersal vectors. Active choice of these vectors allows to optimize the kernel. As most animals have evolved some kind of memory and sensory apparatus - chemical, acoustic or optical sensors - it is obvious that these capacities should be used for dispersal decisions. Chapter 5 explores the use of chemical cues for vector choice in passively dispersed animals. I find that the neotropical phoretic flower mites Spadiseius calyptrogynae non-randomly mix different dispersal vectors, i.e. one short- and one long-distance disperser, in order to achieve fat-tailed dispersal kernels. Such kernels allow an optimal exploitation of patchily distributed habitats. In addition, this strategy increases the probability of successful immigration as the short-distance dispersal vectors show directed dispersal towards suitable habitats. Results from individual-based simulations support and explain my empirical findings. The use of memory and sensory apparatus in dispersal is also the main topic of chapter 6 which strives to bridge the gap between dispersal and movement ecology. In this part of my thesis I develop a model of non-random, memory-based animal movement strategies. Extending the movement ecology paradigm of Nathan (2008a) I postulate that four elements may be relevant for the emergence of efficient movement strategies: perception, memory, inference and anticipation. Movement strategies including these four elements optimize search efficiency at two scales: within patches and between patches. This leads to a significantly increased search efficiency over a comparable area restricted search strategy. These four chapters are completed by a general analysis of metapopulation dynamics (chapter 2). I find that although the metapopulation concept is very popular in theoretical ecology, classical metapopulations can be predicted to be rare in nature, as suggested by lacking empirical evidence. This is especially the case when gene level factors, such as ploidy and sex, are taken into account. In summary, my work analyses the effects of ecological and evolutionary forces arising at the gene- and individual level on the evolution of dispersal and movement strategies. I highlight the importance of including these limiting factors, mechanisms and processes and show how they impact the evolution of dispersal in spatially structured populations. All chapters demonstrate that these forces may have dramatic effects on resulting ecological and evolutionary dynamics. If we intend to understand animal and plant dispersal or movement, it is crucial to include eco-evolutionary forces emerging at all levels of complexity, from genes to communities and landscapes. This endeavour is certainly not purely academic. Particularly nowadays, with rapidly changing landscape structures and anticipated drastic shifts of climatic zones due to global change, dispersal is a factor that cannot be overestimated.}, subject = {Metapopulation}, language = {en} } @phdthesis{Brill2013, author = {Brill, Martin Fritz}, title = {Processing and plasticity within the dual olfactory pathway in the honeybee brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85600}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {In their natural environment animals face complex and highly dynamic olfactory input. This requires fast and reliable processing of olfactory information, in vertebrates as well as invertebrates. Parallel processing has been shown to improve processing speed and power in other sensory systems like auditory or visual. In the olfactory system less is known about olfactory coding in general and parallel processing in particular. With its elaborated olfactory system and due to their specialized neuroanatomy, honeybees are well-suited model organism to study parallel olfactory processing. The honeybee possesses a unique neuronal architecture - a dual olfactory pathway. Two mirror-imaged output projection neuron (PN) pathways connect the first olfactory processing stage, the antennal lobe (analog to the vertebrates olfactory bulb, OB), with the second, the mushroom body (MB) known to be involved in orientation and learning and memory, and the lateral horn (LH). The medial antennal lobe-protocerebral tract (m-APT) first innervates the MB and thereafter the LH, while the other, the lateral-APT (l-APT) projects in opposite direction. The neuroanatomy and evolution of these pathways has been analyzed, yet little is known about its physiology. To analyze the function of the dual olfactory pathway a new established recording method was designed and is described in the first chapter of this thesis (multi-unit-recordings). This is now the first time where odor response from several PNs of both tracts is recorded simultaneously and with high temporal precision. In the second chapter the PN odor responses are analyzed. The major findings are: both tracts responded to all tested odors but with differing characteristics. Since recent studies describe the input to the two tracts being rather similar, the results now indicate differential odor processing along the tracts, therefore this is a good indicator for parallel processing. PNs of the m-APT process odors in a sparse manner with delayed response latencies, but with high odor-specificity. PNs of the l-APT in contrast respond to several odor stimuli and respond in general faster. In some PN originating from both tracts, characteristics of odor-identity coding via response latencies were found. Analyzing the over-all dynamic range of the PNs both l- and m-APT PNs were tested over a large odor concentration range (10-6 to 10-2) (3. chapter). The PNs responded with linear and non-linear correlation of the response strength to the odor concentration. In most cases the l-APT is comparatively more sensitive to low odor concentrations. Response latency decreases with increasing odor concentration in both tracts. Alternative coding principles and elaboration on the hypothesis whether the dual olfactory pathway may contribute coincidental innervation to the next higher-order neurons, the Kenyon cells (KC), is subject of the 4. chapter. Cross-correlations and synchronous responses of both tracts show that in principle odors may be coded via temporal coding. Results suggest that odor processing is enhanced if both tracts contribute to olfactory coding together. In another project the distribution of the inhibitory neurotransmitter GABA (gamma-aminobutyric acid) was measured in the bee's MB during adult maturation (5. chapter). GABAergic inhibition is of high importance in odor coding. An almost threefold decrease in the total amount of GABAergic innervation was found during adult maturation in the l- and m-APT target region, in particular at the change in division of labor during the transition from a young nurse bee to an older forager bee. The results fit well into the current understanding of brain development in the honeybee and other social insects during adult maturation, which was described as presynaptic pruning and KC dendritic outgrowth. Combining anatomical and functional properties of the bee's dual olfactory pathway suggests that both rate and temporal coding are implemented along two parallel streams. Comparison with recent work on analog output pathways of the vertebrate's OB indicates that parallel processing of olfactory information may be a common principle across distant taxa.}, subject = {Tierphysiologie}, language = {en} } @phdthesis{Wangorsch2013, author = {Wangorsch, Gaby}, title = {Mathematical modeling of cellular signal transduction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87746}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {A subtly regulated and controlled course of cellular processes is essential for the healthy functioning not only of single cells, but also of organs being constituted thereof. In return, this entails the proper functioning of the whole organism. This implies a complex intra- and inter-cellular communication and signal processing that require equally multi-faceted methods to describe and investigate the underlying processes. Within the scope of this thesis, mathematical modeling of cellular signaling finds its application in the analysis of cellular processes and signaling cascades in different organisms. ...}, subject = {Mathematische Modellierung}, language = {en} } @phdthesis{Wu2013, author = {Wu, Lingdan}, title = {Emotion Regulation in Addicted Smokers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85471}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Background: Nicotine addiction is the most prevalent type of drug addiction that has been described as a cycle of spiraling dysregulation of the brain reward systems. Imaging studies have shown that nicotine addiction is associated with abnormal function in prefrontal brain regions that are important for cognitive emotion regulation. It was assumed that addicts may perform less well than healthy nonsmokers in cognitive emotion regulation tasks. The primary aims of this thesis were to investigate emotional responses to natural rewards among smokers and nonsmokers and to determine whether smokers differ from nonsmokers in cognitive regulation of positive and negative emotions. To address these aims, two forms of appraisal paradigms (i.e., appraisal frame and reappraisal) were applied to compare changes in emotional responses of smokers with that of nonsmokers as a function of appraisal strategies. Experiment 1: The aim of the first experiment was to evaluate whether and how appraisal frames preceding positive and negative picture stimuli affect emotional experience and facial expression of individuals. Twenty participants were exposed to 125 pairs of auditory appraisal frames (either neutral or emotional) followed by picture stimuli reflecting five conditions: unpleasant-negative, unpleasant-neutral, pleasant-positive, pleasant-neutral and neutral-neutral. Ratings of valence and arousal as well as facial EMG activity over the corrugator supercilii and the zygomaticus major were measured simultaneously. The results indicated that appraisal frames could alter both subjective emotional experience and facial expressions, irrespective of the valence of the pictorial stimuli. These results suggest and support that appraisal frame is an efficient paradigm in regulation of multi-level emotional responses. 8 Experiment 2: The second experiment applied the appraisal frame paradigm to investigate how smokers differ from nonsmokers on cognitive emotion regulation. Sixty participants (22 nonsmokers, 19 nondeprived smokers and 19 12-h deprived smokers) completed emotion regulation tasks as described in Experiment 1 while emotional responses were concurrently recorded as reflected by self-ratings and psychophysiological measures (i.e., facial EMG and EEG). The results indicated that there was no group difference on emotional responses to natural rewards. Moreover, nondeprived smokers and deprived smokers performed as well as nonsmokers on the emotion regulation task. The lack of group differences in multiple emotional responses (i.e., self-reports, facial EMG activity and brain EEG activity) suggests that nicotine addicts have no deficit in cognitive emotion regulation of natural rewards via appraisal frames. Experiment 3: The third experiment aimed to further evaluate smokers' emotion regulation ability by comparing performances of smokers and nonsmokers in a more challenging cognitive task (i.e., reappraisal task). Sixty-five participants (23 nonsmokers, 22 nondeprived smokers and 20 12-h deprived smokers) were instructed to regulate emotions by imagining that the depicted negative or positive scenario would become less negative or less positive over time, respectively. The results showed that nondeprived smokers and deprived smokers responded similarly to emotional pictures and performed as well as nonsmokers in down-regulating positive and negative emotions via the reappraisal strategy. These results indicated that nicotine addicts do not have deficit in emotion regulation using cognitive appraisal strategies. In sum, the three studies consistently revealed that addicted smokers were capable to regulate emotions via appraisal strategies. This thesis establishes the groundwork for therapeutic use of appraisal instructions to cope with potential self-regulation failures in nicotine addicts.}, subject = {Gef{\"u}hl}, language = {en} } @phdthesis{Hofmann2013, author = {Hofmann, Sebastian}, title = {Studies on the function and regulation of CD84, GPVI and Orai2 in genetically modified mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87949}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Platelet activation and aggregation at sites of vascular injury are essential processes to limit blood loss but they also contribute to arterial thrombosis, which can lead to myocardial infarction and stroke. Stable thrombus formation requires a series of events involving platelet receptors which contribute to adhesion, activation and aggregation of platelets. Regulation of receptor expression by (metallo-)proteinases has been described for several platelet receptors, but the molecular mechanisms are ill-defined. The signaling lymphocyte activation molecule (SLAM) family member CD84 is expressed in immune cells and platelets, however its role in platelet physiology was unclear. In this thesis, CD84 deficient mice were generated and analyzed. In well established in vitro and in vivo assays testing platelet function and thrombus formation, CD84 deficient mice displayed phenotypes indistinguishable from wild-type controls. It was concluded that CD84 in platelets does not function as modulator of thrombus formation, but rather has other functions. In line with this, in the second part of this thesis, a novel regulation mechanism for platelet CD84 was discovered and elucidated. Upon platelet activation, the N-terminus of CD84 was found to be cleaved exclusively by the a disintegrin and metalloproteinase 10 (ADAM10), whereas the intracellular part was cleaved by calpain. In addition, regulation of the platelet activating collagen receptor glycoprotein VI (GPVI) was studied and it was shown that GPVI is in contrast to CD84 differentially regulated by ADAM10 and ADAM17. A novel role of CD84 under pathophysiological conditions was revealed as CD84 deficient mice were protected from ischemic stroke in the model of transient middle cerebral artery occlusion and this protection was based on the lack of CD84 in T cells. Ca2+ is an essential second messenger that facilitates activation of platelets and diverse functions in different eukaryotic cell types. Store-operated Ca2+ entry (SOCE) represents the major mechanism leading to rise in intracellular Ca2+ concentration in non-excitable cells. The Ca2+ sensor STIM1 (stromal interaction molecule 1) and the SOC channel subunit protein Orai1 are established mediators of SOCE in platelets. STIM2 is the major STIM isoform in neurons, but the role of the SOC channel subunit protein Orai2 in platelets and neurons has remained elusive. In the third part of this thesis, Orai2 deficient mice were generated and analyzed. Orai2 was dispensable for platelet function, however, Orai2 deficient mice were protected from ischemic neurodegeneration and this phenotype was attributed to defective SOCE in neurons.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Schul2013, author = {Schul, Daniela}, title = {Spatio-temporal investigation and quantitative analysis of the BMP signaling pathway}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-84224}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Bone Morphogenetic Proteins (BMPs) are key regulators for a lot of diverse cellular processes. During embryonic development these proteins act as morphogens and play a crucial role particularly in organogenesis. BMPs have a direct impact on distinct cellular fates by means of concentration-gradients in the developing embryos. Using the diverse signaling input information within the embryo due to the gradient, the cells transduce the varying extracellular information into distinct gene expression profiles and cell fate decisions. Furthermore, BMP proteins bear important functions in adult organisms like tissue homeostasis or regeneration. In contrast to TGF-ß signaling, currently only little is known about how cells decode and quantify incoming BMP signals. There is poor knowledge about the quantitative relationships between signal input, transducing molecules, their states and location, and finally their ability to incorporate graded systemic inputs and produce qualitative responses. A key requirement for efficient pathway modulation is the complete comprehension of this signaling network on a quantitative level as the BMP signaling pathway, just like many other signaling pathways, is a major target for medicative interference. I therefore at first studied the subcellular distribution of Smad1, which is the main signal transducing protein of the BMP signaling pathway, in a quantitative manner and in response to various types and levels of stimuli in murine c2c12 cells. Results indicate that the subcellular localization of Smad1 is not dependent on the initial BMP input. Surprisingly, only the phospho-Smad1 level is proportionally associated to ligand concentration. Furthermore, the activated transducer proteins were entirely located in the nucleus. Besides the subcellular localization of Smad1, I have analyzed the gene expression profile induced by BMP signaling. Therefore, I examined two endogenous immediate early BMP targets as well as the expression of the stably transgenic Gaussia Luciferase. Interestingly, the results of these independent experimental setups and read-outs suggest oscillating target gene expression. The amplitudes of the oscillations showed a precise concentration-dependence for continuous and transient stimulation. Additionally, even short-time stimulation of 15' activates oscillating gene-expression pulses that are detectable for at least 30h post-stimulation. Only treatment with a BMP type I receptor kinase inhibitor leads to the complete abolishment of the target gene expression. This indicated that target gene expression oscillations depend directly on BMP type I receptor kinase activity.}, subject = {Knochen-Morphogenese-Proteine}, language = {en} } @phdthesis{Kuehn2013, author = {K{\"u}hn, Andrea}, title = {The molecular interplay of proteins expressed in the sexual stages and the induction of gamete formation in the malaria parasite Plasmodium falciparum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98028}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Transmission of the malaria parasite from man to the mosquito requires the formation of sexual parasite stages, the gametocytes. The gametocytes are the only parasite stage that is able to survive in the mosquito midgut and to undergo further development - gamete formation and fertilization. Numerous sexual stage-specific proteins have been discovered, some of which play crucial roles for parasite transmission. However, the functions of many sexual stage proteins remain elusive. Amongst the sexual stage-specific proteins are the proteins of the PfCCp proteins family, which exhibit numerous adhesion domains in their protein structures. For four members of the protein family, PfCCp1 to PfCCp4 gene-disruptant parasite lines had been already studied. Amongst these, PfCCp2 and PfCCp3 showed an important role for development of the parasites in the mosquito. In the present work the study of gene-disrupted parasites of the PfCCp Protein family was completed. PfCCp5-KO and PfFNPA-KO parasite lines were characterized to a great extent and many properties were similar to those of other PfCCp proteins. The co-dependent expression previously reported to be a phenomenon of PfCCp proteins was also observed in these two mutants, although to lesser extent. When either PfCCp5 or PfFNPA were absent, all other proteins were detected in reduced abundance only. Co-dependent expression manifests exclusively on the protein level. Transcript levels were not altered as RT-PCR showed. Amongst PfCCp proteins numerous proteinproteins interactions are taking place. The previously described multimeric protein complexes also include further sexual stage-specific proteins like Pfs230, Pfs48/45 and Pfs25. Recently, a new component of PfCCp-based multimeric protein complexes had been identified. The protein was named PfWLP1 (WD repeat protein-like protein 1) due to its possession of several WD40 repeats. In the present study expression of this uncharacterized protein was investigated via indirect IFA. It was expressed in asexual blood stages and gametocytes. Upon gamete formation and fertilization its expression ceased. Another sexual stage protein studied in this work was PfactinII. It was shown to be exclusively expressed in sexual stages. In gametocytes it co-localizes with Pfs230 and correct localization of PfactinII depends on presence of Pfs230. Transcript analysis by means of RT-PCR revealed the expression of several components of the IMC in gametocytes. Furthermore, five or six myosin genes encoded in the P. falciparum genome were detected in gametocytes. Gametocyte egress was studied on the ultrastructural level via transmission electron microscopy and an inside-out type of egress was observed. Firstly, the membrane of the parasitophorous vacuole (PVM) was lysed and only thereafter the membrane of the red blood cell (RBCM) ruptured. Furthermore, a new inductor of gametogenesis was identified: The K+/H+ ionophore nigericin induced gametocytes activation in the absence of xanthurenic acid (XA), which is responsible for gamtetocyte activation in the mosquito midgut. Selective permeabilization of RBCM and PVM by the mild detergent saponin, showed that in the absence of these membranes male gametocytes were still able to perceive both XA and the drop in temperature. Thus, the receptors for both factors signaling the parasite transmission to the mosquito, seem to be of parasitic origin. LC/MS/MS analysis confirmed the ability of RBCs to take up XA. With malaria eradication on the agenda of malaria research targeting the sexual stages becomes a crucial part of intervention strategies. The sexual stages are especially attractive target as they represent a population bottleneck. The here reported findings on P. falciparum gametocytes provide several potential candidate proteins for developing tools to interrupt transmission from man to mosquito. Such tools might include Transmission blocking vaccines and drugs.}, subject = {Malaria}, language = {en} }